Vol. 40
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-01-04
Properties of Airy-Gauss Beams in the Fractional Fourier Transform Plane
By
Progress In Electromagnetics Research M, Vol. 40, 143-151, 2014
Abstract
An analytical expression of an Airy-Gauss beam passing through a fractional Fourier transform (FRFT) system is derived. The normalized intensity distribution, phase distribution, centre of gravity, effective beam size, linear momentum, and kurtosis parameter of the Airy-Gauss beam are demonstrated in FRFT plane, respectively. The influence of the fractional order p on the normalized intensity distribution, phase distribution, centre of gravity, effective beam size, linear momentum, and kurtosis parameter of the Airy-Gauss beam are examined in FRFT plane. The fractional order p controls the normalized intensity distribution, phase distribution, centre of gravity, effective beam size, linear momentum, and kurtosis parameter. The period of the normalized intensity, phase, and centre of gravity versus the fractional order p is 4. The period of effective beam size, linear momentum, and kurtosis parameter versus the fractional order p is 2. The periodic behaviors of the normalized intensity distribution, phase distribution, centre of gravity, effective beam size, linear momentum, and kurtosis parameter can bring novel applications such as optical switch, optical micromanipulation, and optical image processing.
Citation
Yimin Zhou, Guoquan Zhou, and Guoyun Ru, "Properties of Airy-Gauss Beams in the Fractional Fourier Transform Plane," Progress In Electromagnetics Research M, Vol. 40, 143-151, 2014.
doi:10.2528/PIERM14120103
References

1. Berry, M. V. and N. L. Balazs, "Nonspreading wave packets," Am. J. Phys., Vol. 47, 264-267, 1979.
doi:10.1119/1.11855        Google Scholar

2. Chen, R. P., H. P. Zheng, and C. Q. Dai, "Wigner distribution function of an Airy beam," J. Opt. Soc. Am. A, Vol. 28, 1307-1311, 2011.
doi:10.1364/JOSAA.28.001307        Google Scholar

3. Kaganovsky, Y. and E. Heyman, "Wave analysis of Airy beams," Opt. Express, Vol. 18, 8440-8452, 2010.
doi:10.1364/OE.18.008440        Google Scholar

4. Brokly, J., G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, "Self-healing properties of optical Airy beams," Opt. Express, Vol. 16, 12880-12891, 2008.
doi:10.1364/OE.16.012880        Google Scholar

5. Sztul, H. I. and R. R. Alfano, "The Poynting vector and angular momentum of Airy beams," Opt. Express, Vol. 16, 9411-9416, 2008.
doi:10.1364/OE.16.009411        Google Scholar

6. Siviloglou, G. A., J. Brokly, A. Dogariu, and D. N. Christodoulides, "Ballistic dynamics of Airy beams," Opt. Lett., Vol. 33, 207-209, 2008.
doi:10.1364/OL.33.000207        Google Scholar

7. Chen, R. P. and C. F. Ying, "Beam propagation factor of an Airy beam," J. Opt., Vol. 13, 085704, 2011.
doi:10.1088/2040-8978/13/8/085704        Google Scholar

8. Zhou, G. Q., R. P. Chen, and X. X. Chu, "Fractional Fourier transform of Airy beams," Appl. Phys. B, Vol. 109, 549-556, 2012.
doi:10.1007/s00340-012-5117-3        Google Scholar

9. Xu, Y. Q. and G. Q. Zhou, "The far-field divergent properties of an Airy beam," Opt. & Laser Tech., Vol. 44, 1318-1323, 2012.
doi:10.1016/j.optlastec.2011.12.037        Google Scholar

10. Siviloglou, G. A., J. Brokly, A. Dogariu, and D. N. Christodoulides, "Observation of accelerating Airy beam," Phys. Rev. Lett., Vol. 99, 213901, 2007.
doi:10.1103/PhysRevLett.99.213901        Google Scholar

11. Siviloglou, G. A. and D. N. Christodoulides, "Accelerating finite energy Airy beams," Opt. Lett., Vol. 32, 979-981, 2007.
doi:10.1364/OL.32.000979        Google Scholar

12. Polynkin, P., M. Kolesik, and J. Moloney, "Filamentation of femtosecond laser Airy beams in water," Phys. Rev. Lett., Vol. 103, 123902, 2009.
doi:10.1103/PhysRevLett.103.123902        Google Scholar

13. Chen, R. P., C. F. Yin, X. X. Chu, and H. Wang, "Effect of Kerr nonlinearity on an Airy beam," Phys. Rev. A, Vol. 82, 043832, 2010.
doi:10.1103/PhysRevA.82.043832        Google Scholar

14. Chu, X. X., "Evolution of an Airy beam in turbulence," Opt. Lett., Vol. 36, 2701-2703, 2011.
doi:10.1364/OL.36.002701        Google Scholar

15. Jia, S., J. Lee, J. W. Fleischer, G. A. Siviloglou, and D. N. Christodoulides, "Diffusion-trapped Airy beams in photorefractive media," Phys. Rev. Lett., Vol. 104, 253904, 2010.
doi:10.1103/PhysRevLett.104.253904        Google Scholar

16. Zhou, G. Q., R. P. Chen, and X. X. Chu, "Propagation of Airy beams in uniaxial crystals orthogonal to the optical axis," Opt. Express, Vol. 20, 2196-2205, 2012.
doi:10.1364/OE.20.002196        Google Scholar

17. Zhou, G. Q., R. P. Chen, and G. Y. Ru, "Propagation of an Airy beam in a strongly nonlocal nonlinear media," Laser Phys. Lett., Vol. 11, 105001, 2014.
doi:10.1088/1612-2011/11/10/105001        Google Scholar

18. Wen, W., X. Y. Lu, C. L. Zhao, and Y. J. Cai, "Propagation of Airy beam passing through the misaligned optical system with hard aperture," Opt. Commun., Vol. 313, 350-355, 2014.
doi:10.1016/j.optcom.2013.10.056        Google Scholar

19. Chu, X. X., Z. J. Liu, and P. Zhou, "Generation of a high-power Airy beam by coherent combining technology," Laser Phys. Lett., Vol. 10, 125102, 2013.
doi:10.1088/1612-2011/10/12/125102        Google Scholar

20. Baumgartl, J., M. Mazilu, and K. Dholakia, "Optically mediated particle clearing using Airy wavepackets," Nature Photon., Vol. 2, 675-678, 2008.
doi:10.1038/nphoton.2008.201        Google Scholar

21. Ellenbogen, T., N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, "Nonlinear generation and manipulation of Airy beams," Nature Photon., Vol. 3, 395-398, 2009.
doi:10.1038/nphoton.2009.95        Google Scholar

22. Lu, W., J. Chen, Z. Lin, and S. Liu, "Driving a dielectric cylindrical particle with a one dimensional airy beam: A rigorous full wave solution," Progress In Electromagnetics Research, Vol. 115, 409-422, 2011.
doi:10.2528/PIER11031704        Google Scholar

23. Piksarv, P., A. Valdmann, H. Valtna-Lukner, and P. Saari, "Ultrabroadband Airy light bullets," Laser. Phys., Vol. 24, 085301, 2014.
doi:10.1088/1054-660X/24/8/085301        Google Scholar

24. Bandres, M. A. and J. C. Gutiérrez-Vega, "Airy-Gauss beams and their transformation by paraxial optical systems," Opt. Express, Vol. 15, 16719-16728, 2007.
doi:10.1364/OE.15.016719        Google Scholar

25. Deng, D. M. and H. Li, "Propagation properties of Airy-Gaussian beam," Appl. Phys. B, Vol. 106, 677-681, 2012.
doi:10.1007/s00340-011-4799-2        Google Scholar

26. Deng, X. B., D. M. Deng, C. Chen, and C. Y. Liu, "Analytical vectorial structure of Airy-Gaussian beam," Acta Phys. Sin., Vol. 62, 174201, 2013.        Google Scholar

27. Lohmann, A. W., "Image rotation, Wigner rotation, and the fractional Fourier transform," J. Opt. Soc. Am. A, Vol. 10, 2181-2186, 1993.
doi:10.1364/JOSAA.10.002181        Google Scholar

28. Namias, V., "The fractional order Fourier transform and its application to quantum mechanics," J. Inst. Math. Appl., Vol. 25, 241-265, 1980.
doi:10.1093/imamat/25.3.241        Google Scholar

29. Cai, Y. J. and Q. Lin, "Transformation and spectrum properties of partially coherent beams in the fractional Fourier transform plane," J. Opt. Soc. Am. A, Vol. 20, 1528-1536, 2003.
doi:10.1364/JOSAA.20.001528        Google Scholar

30. Du, X. Y. and D. M. Zhao, "Fractional Fourier transform of truncated elliptical Gaussian beams," Appl. Opt., Vol. 45, 9049-9052, 2006.
doi:10.1364/AO.45.009049        Google Scholar

31. Zhou, G. Q., "Fractional Fourier transform of Lorentz-Gauss beams," J. Opt. Soc. Am. A, Vol. 26, 350-355, 2009.
doi:10.1364/JOSAA.26.000350        Google Scholar

32. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 1980.

33. Carter, W. H., "Spot size and divergence for Hermite Gaussian beams of any order," Appl. Opt., Vol. 19, 1027-1029, 1980.
doi:10.1364/AO.19.001027        Google Scholar

34. Yakimenko, A. I., V. M. Lashkin, and O. O. Prikhodko, "Dynamics of two-dimensional coherent structures in nonlocal nonlinear media," Phys. Rev. E, Vol. 73, 066605, 2006.
doi:10.1103/PhysRevE.73.066605        Google Scholar

35. Bock, B. D., Multivariate Statistical Method in Behavioral Research, McGraw-Hill, 1975.

36. Dai, C. Q., X. G. Wang, G. Q. Zhou, and J. L. Chen, "Optical image-hiding method with false information disclosure based on the interference principle and partial-phase-truncation in the fractional Fourier domain," Laser Phys. Lett., Vol. 11, 075603, 2014.
doi:10.1088/1612-2011/11/7/075603        Google Scholar

37. Yu, L. and Y. Zhang, "Application of the fractional fourier transform to moving train imaging," Progress In Electromagnetics Research M, Vol. 19, 13-23, 2011.
doi:10.2528/PIERM11051401        Google Scholar