Vol. 53
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-06-02
Wideband Balun Bandpass Filter Based on Substrate Integrated Waveguide and CSRRs
By
Progress In Electromagnetics Research Letters, Vol. 53, 115-119, 2015
Abstract
A high selectivity wideband balun bandpass filter based on substrate integrated waveguide (SIW) and complementary split rings resonators (CSRRs) is proposed. 180° reverse phase characteristic between the two output ports can be easily realized by the multi-layer SIW power divider. Eight complementary split rings resonators are used to achieve the sharp rejection upper stopband. The proposed wideband balun filter exhibits a fractional bandwidth of 37% centered at 9.45 GHz and amplitude and phase imbalance less than 0.5 dB and 1°.
Citation
Wenjie Feng, Shunyu Yao, Jialiang Shen, and Rui Cao, "Wideband Balun Bandpass Filter Based on Substrate Integrated Waveguide and CSRRs," Progress In Electromagnetics Research Letters, Vol. 53, 115-119, 2015.
doi:10.2528/PIERL15040701
References

1. Hirokawa, J. and M. Ando, "Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates," IEEE Trans. Antennas Propag., Vol. 46, 625-630, 1998.
doi:10.1109/8.668903        Google Scholar

2. Deslandes, D. and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microw. Wireless Compon. Lett., Vol. 11, 68-70, 2001.
doi:10.1109/7260.914305        Google Scholar

3. Che, W. Q., K. Deng, D. P. Wang, L. Xu, and Y. L. Chow, "Analytical equivalence between substrate-integrated waveguide (SIW) and rectangular waveguide," IET Microw. Antennas Propag., Vol. 2, 35-41, 2008.
doi:10.1049/iet-map:20060283        Google Scholar

4. Cheng, Y., W. Hong, and K. Wu, "Half mode substrate integrated waveguide (HMSIW) directional filter," IEEE Microw. Wireless Compon. Lett., Vol. 17, 504-506, 2007.
doi:10.1109/LMWC.2007.899309        Google Scholar

5. Che, W. Q., B. Fu, P. Yao, Y. L. Chow, and E. K. N. Yung, "A compact substrate integrated waveguide H-plane horn antenna with dielectric arc lens: Research articles," Int. J. RF Microw. Comput.-Aided Eng., Vol. 17, 473-479, 2007.
doi:10.1002/mmce.20237        Google Scholar

6. Han, L., K. Wu, and S. Winkler, "Singly balanced mixer using substrate integrated waveguide magic-T structure," Proceedings European Wireless Technology Conference, 9-12, 2008.        Google Scholar

7. Song, K. J., Y. Fan, and Y. Zhang, "Eight-way substrate integrated waveguide power divider with low insertion loss," IEEE Trans. Microw. Theory Techn., Vol. 56, 1473-1477, 2008.
doi:10.1109/TMTT.2008.923897        Google Scholar

8. Hong, W., B. Liu, Y. Q. Wang, Q. H. Lai, and K. Wu, "Half mode substrate integrated waveguide: A new guided wave structure for microwave and millimeter wave application," Proc. Joint 31st Int. Conf. Infrared Millim. Waves 14th Int. Conf. Terahertz Electron., 219, Shanghai, China, Sep. 18–22, 2006.        Google Scholar

9. Che, W. Q., L. Geng, K. Deng, and Y. L. Chow, "Analysis and experiments of compact folded substrate-integrated waveguide," IEEE Trans. Microw. Theory Techn., Vol. 51, 88-93, 2008.
doi:10.1109/TMTT.2007.911955        Google Scholar

10. Feng, W., Q. Xue, and W. Che, "Compact planar magic-T based on the double-sided parallel-strip line and the slotline coupling," IEEE Trans. Microw. Theory Techn., Vol. 58, 2915-2923, 2010.
doi:10.1109/TMTT.2010.2078312        Google Scholar

11. Feng, W. J. and W. Q. Che, "Wideband balun bandpass filter based on a differential circuit," 2012 International Microwave Symposium, 1-3, Baltimore, Montr´eal, Canada, 2012.        Google Scholar

12. Li, J. L., S. W. Qu, and Q. Xue, "Miniaturised branch-line balun with bandwidth enhancement," IET Electron. Lett., Vol. 43, 931-932, 2007.
doi:10.1049/el:20071074        Google Scholar

13. Xu, H. X., G. M. Wang, C. X. Zhang, and T. P. Li, "Broadband balun using fully artificial fractal-shaped composite right/left handed transmission line," IEEE Microw. Wireless Compon. Lett., Vol. 22, 16-18, 2012.
doi:10.1109/LMWC.2011.2173929        Google Scholar

14. Zhang, Z. Y. and K. Wu, "A broadband substrate integrated waveguide (SIW) planar balun," IEEE Microw. Wireless Compon. Lett., Vol. 17, 843-845, 2007.
doi:10.1109/LMWC.2007.910479        Google Scholar

15. Wu, L. S., Y. X. Guo, J. F. Mao, and W. Y. Yin, "Design of a substrate integrated waveguide balun filter based on three-port coupled-resonator circuit model," IEEE Microw. Wireless Compon. Lett., Vol. 21, 252-254, 2011.
doi:10.1109/LMWC.2011.2116776        Google Scholar

16. Hui, J. N., W. J. Feng, and W. Q. Che, "Balun bandpass filter based on multilayer substrate integrated waveguide power divider," IET Electron. Lett., Vol. 48, 571-572, 2012.
doi:10.1049/el.2012.0479        Google Scholar

17. Feng, W. J., W. Q. Che, and K. Deng, "Compact planar magic-T using E-plane substrate integrated waveguide (SIW) power divider," IEEE Microw. Wireless Compon. Lett., Vol. 20, 331-333, 2010.
doi:10.1109/LMWC.2010.2047519        Google Scholar

18. Falcone, F., T. Lopetegi, J. D. Baena, et al. "Effective negative-stop-band microstrip lines based on complementary split ring resonators," IEEE Microw. Wireless Compon. Lett., Vol. 14, 280-282, 2004.
doi:10.1109/LMWC.2004.828029        Google Scholar

19. Gil, I., J. Bonache, M. Gil, J. Garcıa-Garcıa, F. Martın, and R. Marques, "Accurate circuit analysis of resonant type left handed transmission lines with inter-resonator’s coupling," J. Appl. Phys., Vol. 100, 1-10, 2006.
doi:10.1063/1.2353174        Google Scholar