Vol. 43
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-08-12
All-Optical Logic Gates Based on Spatial-Soliton Interactions in Optical Communication Spectral Region
By
Progress In Electromagnetics Research M, Vol. 43, 71-79, 2015
Abstract
New designs of all-optical logic gates based on spatial-soliton interactions in optical communication spectral regions were proposed. The proposed structures are composed of local nonlinear Mach-Zehnder interferometer (MZI) waveguide structures with multi-input ports and two nonlinear output ports. They can be used to design various all-optical logic gates. The nonlinear MZI waveguide structure with local nonlinear waveguides functions like a phase shifter. It employs angular deflection of spatial solitons controlled by the phase modulation created in the local nonlinear MZI. The light-induced index changes in the local nonlinear MZI waveguide structures break the symmetry of structure and make the output signal beam propagate through different nonlinear output waveguides. By properly choosing the input control power, the spatial solitons will be switched to different output ports. The numerical results show that the proposed local nonlinear MZI waveguide structures could really function as all-optical logic gates in the optical communication spectral region.
Citation
Yaw-Dong Wu, "All-Optical Logic Gates Based on Spatial-Soliton Interactions in Optical Communication Spectral Region," Progress In Electromagnetics Research M, Vol. 43, 71-79, 2015.
doi:10.2528/PIERM15060501
References

1. Yariv, A., Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: A proposal and analysis," Opt. Lett., Vol. 24, 711-713, 1999.
doi:10.1364/OL.24.000711        Google Scholar

2. Shi, T. T. and S. Chi, "Nonlinear photonic switching by using the spatial soliton collision," Opt. Lett., Vol. 15, 1123-1125, 1990.
doi:10.1364/OL.15.001123        Google Scholar

3. Wu, Y. D., "New all-optical wavelength auto-router based on spatial solitons," Optics Express, Vol. 12, 4172-4177, 2004.
doi:10.1364/OPEX.12.004172        Google Scholar

4. Villeneuve, A., K. A. Hemyari, J. U. Kang, C. N. Ironside, J. S. Aitchison, and G. I. Stegeman, "Demonstration of all-optical demultiplexing at 1555 nm with an AlGaAs directional coupler," Electronics Lett., Vol. 29, 721-722, 1993.
doi:10.1049/el:19930482        Google Scholar

5. Wu, Y. D., "Coupled-soliton all-optical logic device with two parallel tapered waveguides," Fiber and Integrated Optics, Vol. 23, 405-414, 2004.
doi:10.1080/01468030490489725        Google Scholar

6. Ironside, N. and M. O’Neill, "Guided wave all-optical logic devices," IEE Colloquium on Non-Linear Optical Waveguides, 15/1-15/4, 1988.        Google Scholar

7. Jensen, S. M., "The nonlinear coherent coupler," IEEE Journal of Quantum Electronics, Vol. 18, 1580-1583, 1982.
doi:10.1109/JQE.1982.1071438        Google Scholar

8. Thylen, L., "Beam-propagation method analysis of a nonlinear directional coupler," Opt. Lett., Vol. 11, 739-741, 1986.
doi:10.1364/OL.11.000739        Google Scholar

9. Pertsch, T., U. Peschel, and F. Lederer, "All-optical switching in quadratically nonlinear waveguide arrays," Opt. Lett., Vol. 28, 102-104, 2003.
doi:10.1364/OL.28.000102        Google Scholar

10. Jensen, S. M., "The nonlinear coherent coupler," IEEE J. Quantum Electron., Vol. 18, 1580-1583, 1982.
doi:10.1109/JQE.1982.1071438        Google Scholar

11. Lattes, A., H. Haus, F. J. Leonberger, and E. P. Ippen, "An ultrafast all-optical gate," IEEE J. Quantum Electron., Vol. 19, 1718-1723, 1983.
doi:10.1109/JQE.1983.1071766        Google Scholar

12. Kawaguchi, H., "Proposal for a new all-optical waveguide functional device," Opt. Lett., 411-413, 1985.
doi:10.1364/OL.10.000411        Google Scholar

13. Shi, T. T. and S. Chi, "Nonlinear TE-wave propagation in a symmetric, converging, single-mode Y-junction waveguide," J. Opt. Soc. Amer. B, Vol. 9, 1338-1340, 1992.
doi:10.1364/JOSAB.9.001338        Google Scholar

14. Wa, P. L. K., J. E. Sitch, N. J. Mason, J. S. Roberts, and P. N. Robson, "All-optical multiple-quantum-well wave-guide switch," Electronics Lett., Vol. 21, 26-28, 1985.
doi:10.1049/el:19850021        Google Scholar

15. Finlayson, N., W. C. Banyai, E. M. Wright, C. T. Seaton, G. I. Stegeman, T. J. Cullen, and C. N. Ironside, "Picosecond switching induced by saturable absorption in a nonlinear directional coupler," Appl. Phys. Lett., Vol. 53, 1144-1146, 1988.
doi:10.1063/1.100039        Google Scholar

16. Villeneuve, A., C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchinson, and C. N. Ironside, "Uitrafast all-optical switching in semiconductor nonlinear directional coupler at half band gap," Appl. Phys. Lett., Vol. 61, 147-149, 1992.
doi:10.1063/1.108200        Google Scholar

17. Al-hemyai, K., J. S. Aitchison, C. N. Ironside, G. T. Kennedy, R. S. Grant, and W. Sibbett, "Ultrafast all-optical switching in GaAlAs integrated interferometer in 1.55 μm spectral region," Electronics Lett., Vol. 28, 1090-1092, 1992.
doi:10.1049/el:19920689        Google Scholar

18. Nakamura, S., K. Tajima, and Y. Sugimoto, "Experimental investigation on high-speed switching characteristics of a novel symmetric Mach-Zehnder all-optical switch," Appl. Phys. Lett., Vol. 65, 283-285, 1994.
doi:10.1063/1.112347        Google Scholar

19. Silberberg, Y. and B. G. Sfez, "All-optical phase- and power-controlled switching in nonlinear waveguide junctions," Opt. Lett., Vol. 13, 1132-1134, 1988.
doi:10.1364/OL.13.001132        Google Scholar

20. Fouckhardt, H. and Y. Silberberg, "All-optical switching in waveguide X junctions," J. Opt. Soc. Amer. B, Vol. 7, 803-809, 1990.
doi:10.1364/JOSAB.7.000803        Google Scholar

21. Sabini, J. P., N. Finlayson, and G. I. Stegeman, "All-optical switching in nonlinear X-junctions," Appl. Phys. Lett., Vol. 55, 1176-1178, 1989.
doi:10.1063/1.101689        Google Scholar

22. Aitchison, J. S., A. Villeneuve, and G. I. Stegeman, "All-optical switching in a nonlinear GaAlAs X junction," Opt. Lett., Vol. 18, 1153-1155, 1993.
doi:10.1364/OL.18.001153        Google Scholar

23. Murata, H., M. Izutsu, and T. Sueta, "All-optical switching in new nonlinear X-junctions," Proc. Nonlinear Optics, Vol. 90, 63-64, 1990.        Google Scholar

24. Yokota, H., K. Kimura, and S. Kurazono, "Numerical analysis of an optical X coupler with a nonlinear dieletric region," IEICE Trans. Electron., Vol. E78-C, 61-66, 1995.        Google Scholar

25. Pramoono, Y. H., M. Geshiro, T. Kitamura, and S. Sawa, "Self-switching in crossing waveguides with three channels consisting of nonlinear material," IEICE Trans. Electron., Vol. E82-C, 111-118, 1999.        Google Scholar

26. Wu, Y. D., M. H. Chen, and C. H. Chu, "All-optical logic device using bent nonlinear tapered Y-junction waveguide structure," Fiber Integrated Opt., Vol. 20, 517-524, 2001.
doi:10.1080/014680301750413476        Google Scholar

27. Pramono, Y. H., M. Geshiro, T. Kitamura, and S. Sawa, "Optical logic OR-AND-NOT and NOR gates in waveguides consisting of nonlinear material," IEICE Trans. Electron., Vol. E83-C, 1755-1761, 2000.        Google Scholar

28. Pramono, Y. H., "Nonlinear waveguides for optical logic and computation," J. Nonlinear Opt. Phys. Mater., Vol. 10, 209-222, 2001.
doi:10.1142/S0218863501000553        Google Scholar

29. Wu, Y. D., "Nonlinear all-optical switching device by using the spatial soliton collision," Fiber Integr. Opt, Vol. 23, 387, 2004.
doi:10.1080/01468030490489707        Google Scholar

31. Wu, Y. D., "New all-optical switch based on the spatial soliton repulsion," Optics Express, Vol. 14, 4005, 2006.
doi:10.1364/OE.14.004005        Google Scholar

32. Wu, Y. D., M. L. Whang, M. H. Chen, and R. Z. Tasy, "All-optical switch based on the local nonlinear Mach-Zehnder interferometer," Optics Express, Vol. 15, 9883, 2007.
doi:10.1364/OE.15.009883        Google Scholar

33. Radwell, N., C. McIntyre, A. J. Scroggie, G. L. Oppo, W. J. Firth, and T. Ackemann, "Switching spatial dissipative solitons in a VCSEL with frequency selective feedback," Eur. Phys. J. D, Vol. 59, 121, 2010.
doi:10.1140/epjd/e2010-00124-6        Google Scholar

34. Sarma, K., "Vector soliton switching in a fiber nonlinear directional coupler," Opt. Comm., Vol. 284, 186, 2011.
doi:10.1016/j.optcom.2010.09.001        Google Scholar

35. Hatami, M., R. Attarzadeh, and A. Gharaati, "Design of an ultra-fast all-optical dark soliton switch in a three-core nonlinear directional coupler (TNLDC) made of chalcogenide glasses," J. Nonlinear Optic. Phys. Mat., Vol. 21, 1250038, 2012.
doi:10.1142/S0218863512500385        Google Scholar

36. Karimi, S., M. E. Heidari, and F. Forootan, "Design and modellingof a 1 × N all-optical nonline Mach-Zehnder switch controlled by wavelength and input power," Progress In Electromagnetics Research M, Vol. 28, 101-113, 2013.
doi:10.2528/PIERM12100504        Google Scholar

37. Liu, W.-J. and M. Lei, "All-optical soliton switching for the asymmetric fiber couplers," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 18, 2288-2297, 2013.
doi:10.1080/09205071.2013.839961        Google Scholar

38. Zhong, H., B. Tian, Y. Jiang, M. Li, P. Wang, and W.-J. Liu, "All-optical soliton switching for the asymmetric fiber couplers," Eur. Phys. J. D, Vol. 67, 1, 2013.        Google Scholar

39. Wu, Y. D., "All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity," IEEE J. Sel. Top. Quantum. Electron., Vol. 11, 307, 2005.        Google Scholar

40. Serak, S. V., N. V. Tabiryan, M. Peccianti, and G. Assanto, "Spatial soliton all-optical logic gates," IEEE Photon. Techn. Lett., Vol. 18, 1287, 2006.
doi:10.1109/LPT.2006.875318        Google Scholar

41. Wu, Y. D., T. T. Shih, and M. H. Chen, "New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer," Optics Express, Vol. 16, 248, 2008.
doi:10.1364/OE.16.000248        Google Scholar

42. Corbelli, M. M., F. Garzia, and R. Cusani, "All-optical EXOR for cryptographic application based on spatial solitons," J. of Info. Security, Vol. 4, 180, 2013.
doi:10.4236/jis.2013.43020        Google Scholar

43. Kubota, Y. and T. Odagaki, "Logic gates based on soliton transmission in the Toda lattice," Adv. in Appl. Phys., Vol. 1, 29, 2013.        Google Scholar

44. Bhrawy, A. H., A. A. Alshaery, E. M. Hilal, W. Manrakhan, M. Savescu, and A. Biswas, "Dispersive optical solitons with Schr¨odinger-Hirota equation," J. of Nonlinear Opt. Phys. and Mater., Vol. 23, 1450014, 2014.
doi:10.1142/S0218863514500143        Google Scholar

45. Bhrawy, A. H., A. A. Alshaery, E. M. Hilal, K. R. Khan, M. F. Mahmood, and A. Biswas, "Optical soliton in nonlinear directional couplers with spatio-temporal dispersion," J. of Modern Opt., Vol. 61, 442-459, 2014.        Google Scholar

46. Savescu, M., S. Johnson, A. H. Kara, S. H. Crutcher, R. Kohl, and A. Biswas, "Convention laws for optical solitons with spatio-tenporal dispersion," Journal of Electromagnetic Waves and Applications, Vol. 28, 242-252, 2014.
doi:10.1080/09205071.2013.863716        Google Scholar

47. Alshaery, A. A., A. H. Bhrawy, A. E. M. Hilal, and A. Biswas, "Bright and singular solitons in quadratic nonlinear media," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 3, 275-280, 2014.
doi:10.1080/09205071.2013.861752        Google Scholar

48. Savescu, M., K. R. Khan, R. W. Kohl, L. Moraru, A. Yildirim, and A. Biswas, "Optical soliton perturbation with improved nonlinear Schrödinger’s equation in nanofibers," J. of Nanoelectron. and Optoelectron., Vol. 8, 208-220, 2013.
doi:10.1166/jno.2013.1459        Google Scholar

49. Kohl, R., A. Biswas, D. Milovic, and E. Zerrad, "Optical soliton perturbation in a non-Kerr law media," Opt. and Laser Tech., Vol. 40, 647-662, 2008.
doi:10.1016/j.optlastec.2007.10.002        Google Scholar

50. Biswas, A., M. Fessak, S. Johnson, S. Beatrice, D. Milovic, Z. Jovanoski, R. Kohl, and F. Majid, "Optical soliton perturbation in non-Kerr law media: Tarveling wave solution," Opt. and Laser Tech., Vol. 44, 1775-1780, 2012.        Google Scholar

51. Biswas, A., A. J. M. Jawad, W. N. Manrakhan, A. K. Sarma, and K. R. Khan, "Optical solitons and complexitions of the Schr¨odinger-Hirota equation," Opt. and Laser Tech., Vol. 44, 2265-2269, 2012.
doi:10.1016/j.optlastec.2012.02.028        Google Scholar

52. Biswas, A., D. Milovic, M. Savescu, M. F. Mahmood, K. R. Khan, and R. Kohl, "Optical soliton perturbation in nanofibers with improved nonlinear Schrödinger’s equatin by semi-inverse variational principle," J. of Nonlinear Opt. Phys. and Mater., Vol. 12, 1250054, 2012.
doi:10.1142/S0218863512500543        Google Scholar

53. Xu, Y., Z. Jovanoski, A. Bouasla, H. Triki, L. Moraru, and A. Biswas, "Optical solitons in multi-dimensions with spatio-temporal dispersion and non-Kerr law nonlinearity," J. of Nonlinear Opt. Phys. and Mater., Vol. 22, 1350035, 2013.
doi:10.1142/S0218863513500355        Google Scholar

54. Kuo, C. W., S. Y. Chen, M. H. Chen, C. F. Chang, and Y. D. Wu, "Analyzing multilayer optical waveguide with all nonlinear layers," Optics Express, Vol. 15, 2499, 2007.
doi:10.1364/OE.15.002499        Google Scholar

55. Chung, Y. and N. Dagli, "An assessment of finite difference beam propagation method," IEEE J. Quantum Electron., Vol. 26, 1335-1339, 1990.
doi:10.1109/3.59679        Google Scholar

56. Stegeman, G. I., E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, "Third order nonlinear integrated optics," J. Lightwave Technol., Vol. 6, 953-990, 1988.
doi:10.1109/50.4087        Google Scholar