Vol. 63
Latest Volume
All Volumes
PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-04-28
A Low Complexity Direction of Arrival Estimation Algorithm by Reinvestigating the Sparse Structure of Uniform Linear Arrays
By
Progress In Electromagnetics Research C, Vol. 63, 119-129, 2016
Abstract
In this paper, we present a new computationally efficient method for direction-of-arrival (DOA) estimation in uniform linear arrays (ULAs). A sparse uniform linear array (SULA) structure is firstly extracted from the conventional ULA to exploit its advantage in high resolution. By performing the multiple signal classification (MUSIC), the noise subspace of the SULA is simultaneously orthogonal to the steering vectors corresponding to the true DOAs and several virtual DOAs, where all the true and virtual DOAs for each source are uniformly distributed in the sine domain. Then we divide the total angular field into several small sectors and search over an arbitrary sector. Finally, the true DOAs can be distinguished by the noise subspace of the original ULA. Since the proposed method involves a limited spectral search and a reduced-dimension noise subspace, hence it is quite computationally efficient. Simulation results are provided to verify the effectiveness of the proposed method in terms of computational complexity, estimation accuracy, and resolution performance.
Citation
Fenggang Sun, Peng Lan, Bin Gao, and Lizhen Chen, "A Low Complexity Direction of Arrival Estimation Algorithm by Reinvestigating the Sparse Structure of Uniform Linear Arrays," Progress In Electromagnetics Research C, Vol. 63, 119-129, 2016.
doi:10.2528/PIERC16021505
References

1. Krim, H. and M. Viberg, "Two decades of array signal processing research: The parametric approach," IEEE Signal Processing Magazine, Vol. 13, No. 4, 67-94, 1996.
doi:10.1109/79.526899

2. Jiang, J., F. Duan, J. Chen, Y. Li, and X. Hua, "Mixed near-field and far-field sources localization using the uniform linear sensor array," IEEE Sensors Journal, Vol. 13, No. 8, 3136-3143, 2013.
doi:10.1109/JSEN.2013.2257735

3. Capon, J., "High-resolution frequency wavenumber spectrum analysis," Proceedings of the IEEE, Vol. 57, No. 8, 1408-1418, 1969.
doi:10.1109/PROC.1969.7278

4. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276-280, 1986.
doi:10.1109/TAP.1986.1143830

5. Rao, B. D. and K. V. S Hari, "Performance analysis of root-MUSIC," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 12, 1939-1949, 1989.
doi:10.1109/29.45540

6. Roy, R. and T. Kailath, "ESPRIT — Estimation of signal parameters via rotational invariance techniques," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 7, 984-995, 1989.
doi:10.1109/29.32276

7. Xu, G. and T. Kailath, "Fast subspace decomposition," IEEE Transactions on Signal Processing, Vol. 42, No. 3, 539-551, 1994.
doi:10.1109/78.277846

8. Yan, F., M. Jin, S. Liu, and X. Qiao, "Real-valued MUSIC for efficient direction estimation with arbitrary array geometries," IEEE Transactions on Signal Processing, Vol. 62, No. 6, 1548-1560, 2014.
doi:10.1109/TSP.2014.2298384

9. Barabell, A., "Improving the resolution performance of eigenstructure-based direction-finding algorithms," Proc. ICASSP’83, Vol. 8, 336-339, 1983.

10. Yan, F., M. Jin, and X. Qiao, "Low-complexity DOA estimation based on compressed MUSIC and its performance analysis," IEEE Transactions on Signal Processing, Vol. 61, No. 8, 1915-1930, 2013.
doi:10.1109/TSP.2013.2243442

11. Morabito, A. F., T. Isernia, and L. Di Donato, "Optimal synthesis of phase-only reconfigurable linear sparse arrays having uniform-amplitude excitations," Progress In Electromagnetics Research, Vol. 124, 405-423, 2012.
doi:10.2528/PIER11112210

12. Wang, J., D. Vasisht, and D. Katabi, "RF-IDraw: Virtual touch screen in the air using RF signals," ACM SIGCOMM14, 235-246, 2014.
doi:10.1145/2740070.2626330

13. Vaidyanathan, P. and P. Pal, "Sparse sensing with co-prime samplers and arrays," IEEE Transactions on Signal Processing, Vol. 59, No. 2, 573-586, 2011.
doi:10.1109/TSP.2010.2089682

14. Zhou, C., Z. Shi, Y. Gu, and X. Shen, "DECOM: DOA estimation with combined MUSIC for coprime array," Proc. WCSP 2013, 1-5, 2013.

15. Weng, Z. and P. Djuric, "A search-free DOA estimation algorithm for coprime arrays," Digital Signal Processing, Vol. 24, 27-33, 2014.
doi:10.1016/j.dsp.2013.10.005

16. Shen, Q., Y. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-ofarrival estimation," IEEE Transactions on Signal Processing, Vol. 63, No. 6, 1377-1390, 2015.
doi:10.1109/TSP.2015.2393838

17. Tan, Z., Y. C. Eldar, and A. Nehorai, "Direction of arrival estimation using co-prime arrays: A super resolution viewpoint," IEEE Transactions on Signal Processing, Vol. 62, No. 21, 5565-5576, 2014.
doi:10.1109/TSP.2014.2354316

18. Shen, Q., W. Liu, W. Cui, S. Wu, Y. Zhang, and M. G. Amin, "Low-complexity direction-of-arrival estimation based on wideband co-prime arrays," IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), Vol. 23, No. 9, 1445-1453, 2015.
doi:10.1109/TASLP.2015.2436214

19. Yin, J. and T. Chen, "Direction-of-arrival estimation using a sparse representation of array covariance vectors," IEEE Transactions on Signal Processing, Vol. 59, No. 9, 4489-4493, 2011.
doi:10.1109/TSP.2011.2158425

20. He, Z., Z. Zhao, Z. Nie, P. Tang, J. Wang, and Q. Liu, "Method of solving ambiguity for sparse array via power estimation based on MUSIC algorithm," Signal Processing, Vol. 92, 542-546, 2012.
doi:10.1016/j.sigpro.2011.08.020

21. He, J. and Z. Liu, "Extended aperture 2-D direction finding with a two-parallel-shape-array using propagator method," IEEE Antennas and Wireless Propagation Letters, Vol. 8, No. 4, 323-327, 2009.

22. Stoica, P. and A. Nehorai, "MUSIC, maximum likelihood, and Cramer-Rao bound," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 5, 720-741, 1989.
doi:10.1109/29.17564

23. Krim, H., P. Forster, and J. G. Proakis, "Operator approach to performance analysis of root- MUSIC and root min-norm," IEEE Transactions on Signal Processing, Vol. 40, No. 7, 1687-1696, 1992.
doi:10.1109/78.143441

24. Zhang, Q. T., "Probability of resolution of the MUSIC algorithm," IEEE Transactions on Signal Processing, Vol. 43, No. 4, 978-987, 1995.
doi:10.1109/78.376849