Vol. 51
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-10-30
Multipactor Breakdown in Elliptical Waveguide Carrying Orthogonal Polarizations
By
Progress In Electromagnetics Research M, Vol. 51, 113-120, 2016
Abstract
Multipactor effect is studied in a hollow elliptical waveguide carrying two orthogonal polarization modes, i.e., the fundamental (TEc11) and the second (TEs11) elliptical waveguide modes. The introduction of a modal equivalent voltage allows defining the standard axial ratio, which characterizes each polarization state of the problem. The RF breakdown threshold is determined as a function of the axial ratio for various amplitudes and phases of the two elliptical modes. In particular, the effect of the second mode on the RF breakdown threshold of the fundamental mode is studied. The simulations are carried out for different values of the eccentricity of the ellipse eccentricity.
Citation
Samaneh Esfandiarpour Ali Frtoanpour , "Multipactor Breakdown in Elliptical Waveguide Carrying Orthogonal Polarizations," Progress In Electromagnetics Research M, Vol. 51, 113-120, 2016.
doi:10.2528/PIERM16070105
http://www.jpier.org/PIERM/pier.php?paper=16070105
References

1. Boria, V. E. and B. Gimeno, "Waveguide filters for satellites," Microwave Magazine, IEEE, Vol. 8, No. 5, 60-70, 2007.
doi:10.1109/MMM.2007.903649

2. Mallahzadeh, A. R. and S. Esfandiarpour, "Wideband H-plane horn antenna based on ridge substrate integrated waveguide (RSIW)," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 85-88, 2012.
doi:10.1109/LAWP.2012.2183110

3. Esfandiarpour, S. and A. Frotanpour, "Analysis of a novel V-shape feed line for log-periodic dipole array antenna," 2015 31st International Review of Progress in Applied Computational Electromagnetics (ACES), 1-2, Mar. 2015.

4. Hatch, A. J. and H. B. Williams, "Multipactor modes of high-frequency gaseous breakdown," The Physical Review, Vol. 112, No. 3, 681-685, 2nd Series, Nov. 1958.
doi:10.1103/PhysRev.112.681

5. Vaughan, J. R. M., "Multipactor," IEEE Transactions on Electron Devices, Vol. 35, No. 7, 1172-1180, Jul. 1988.
doi:10.1109/16.3387

6. Kishek, R. A., Y. Y. Lau, L. K. Ang, A. Valfells, and R. M. Gilgenbach, "Multipactor discharge on metals and dielectrics: Historical review and recent theories," Physics of Plasmas, Vol. 5, No. 5, 2120-2126, May 1998.
doi:10.1063/1.872883

7. Frotanpour, A., G. Dadashzadeh, and M. Shahabadi, "Investigation of multipactor effect on return loss degradation," 5th European Conference on Antennas and Propagation (EUCAP), 1739-1742, 2011.

8. Sombrin, J., "Effet multipactor," CNES Technical Report, No. 83/DRT/TIT/HY/119/T, CNES, Toulouse, France, 1983.

9. Woode, A. and J. Petit, "Diagnostic investigations into the multipactor effect, susceptibility zone measurements and parameters affecting a discharge,", Technical Report, ESA/ESTEC Working Paper No. 1556, Noordwijk, The Netherlands, Nov. 1989.

10., Space Engineering: Multipacting Design and Test, ESA Publication Division, The Netherlands, ECSS-20-01A, edited by ESA-ESTEC, May 2003.

11. Lara, J., F. Pérez, M. Alfonseca, L. Galán, I. Montero, E. Román, and D. Raboso, "Multipactor prediction for on-board spacecraft RF equipment with theMEST software tool," IEEE Transactions on Plasma Science, Vol. 34, No. 2, 476-484, Apr. 2006.
doi:10.1109/TPS.2006.872450

12. Anza, S., C. Vicente, D. Raboso, J. Gil, B. Gimeno, and V. E. Boria, "Enhanced prediction of multipaction breakdown in passive waveguide components including space charge effects," IEEE 2008 International Microwave Symposium, 1095-1098, Atlanta, Georgia, USA, Jun. 2008.

13. Wang, C., K. Y. Hsieh, L. H. Chang, M. C. Lin, and K. R. Chu, "A tunable reflecting load for multipactor processing of the RF power coupler of a superconducting cavity," IEEE Transactions on Applied Superconductivity, Vol. 17, No. 2, 1285-1290, Jun. 2007.
doi:10.1109/TASC.2007.899823

14. Zimmermann, F., "A simulation study of electron cloud instability and beam induced multipacting in the LHC,", CERN, Geneva, Switzerland, CERN-LHC-Project-Report-95, Feb. 1997.

15. Semenov, V. E., E. I. Rakova, D. Anderson, M. Lisak, and J. Puech, "Multipactor in rectangular waveguides," Physics of Plasmas, Vol. 14, 033501, 2007.
doi:10.1063/1.2480678

16. Udiljak, R., D. Anderson, M. Lisak, V. Semenov, and J. Puech, "Multipactor in a coaxial transmission line. Part I: Analytical study," Physics of Plasmas, Vol. 14, No. 3, 033508, Mar. 2007.
doi:10.1063/1.2710464

17. Pérez, A. M., C. Tienda, C. Vicente, S. Anza, J. Gil, B. Gimeno, V. E. Boria, and D. Raboso, "Prediction of multipactor breakdown thresholds in coaxial transmission lines for traveling, standing, and mixed waves," IEEE Transactions on Plasma Science, Vol. 37, No. 10, 2031-2040, Oct. 2009.
doi:10.1109/TPS.2009.2028428

18. Pérez, A. M., V. E. Boria, B. Gimeno, S. Anza, C. Vicente, and J. Gil, "Multipactor analysis in circular wave-guides," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1575-1583, 2009.

19. Semenov, V. E., N. A. Zharova, D. Anderson, M. Lisak, and J. Puech, "Simulations of multipactor in circular waveguides," Physics of Plasmas, Vol. 17, 123-503, 2010.

20. Semenov, V. E., E. I. Rakova, A.G. Sazontov, I. M. Nefedov, V. I. Pozdnyakova, I. A. Shereshevskii, D. Anderson, M. Lisak, and J. Puech, "Simulations of multipactor thresholds in shielded microstrip lines," Journal of Physiscs D: Applied Physics, Vol. 42, 205204, 2009.
doi:10.1088/0022-3727/42/20/205204

21. Semenov, V., E. Rakova, N. Zharova, D. Anderson, M. Lisak, and J. Puech, "Simulations of the multipactor effect in hollow waveguides with wedge-shaped cross section," IEEE Transactions on Electron Devices, Vol. 36, No. 2, 488-493, Apr. 2008.

22. Hueso, J., C. Vicente, B. Gimeno, V. E. Boria, S. Marini, and M. Taroncher, "Multipactor effect analysis and design rules for wedge-shaped hollow waveguides," IEEE Transactions on Electron Devices, Vol. 57, No. 12, 3508-3517, Dec. 2010.
doi:10.1109/TED.2010.2075931

23. Frotanpour, A., G. Dadashzadeh, M. Shahabadi, and B. Gimeno, "Analysis of multipactor RF breakdown thresholds in elliptical waveguides," IEEE Transactions on Electron Devices, Vol. 58, No. 3, 876-881, Mar. 2011.
doi:10.1109/TED.2010.2097600

24. Frotanpour, A., B. Gimeno Martinez, and S. Esfandiarpour, "Multipactor in dual-mode elliptical waveguide," 2015 31st International Review of Progress in Applied Computational Electromagnetics (ACES), 2015.

25. Keneshloo, R., G. Dadashzadeh, A. Frotanpour, and M. Okhovvat, "Multipactor analysis in dielectric resonator waveguide filters," Journal of Communication Engineering, Vol. 1, 18-24, 2012.

26. Gimeno, B. and M. Guglielmi, "Full wave network representation for rectangular, circular, and elliptical to elliptical waveguide junctions," IEEE Transactions on Microwave, Theory and Techniques, Vol. 45, No. 3, 376-384, Mar. 1997.
doi:10.1109/22.563336

27. Accatino, L., G. Bertin, and M. Mongiardo, "Elliptical cavity resonators for dual-mode narrow-band filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 12, 2393-2401, Dec. 1997.
doi:10.1109/22.643850

28. Bertin, G., B. Piovano, L. Accatino, and M. Mongiardo, "Full-wave design and optimization of circular waveguide polarizers with elliptical irises," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 4, 1077-1083, Apr. 2002.
doi:10.1109/22.993409

29. Verlet, L., "Computer experiments on classical fluids. I. Thermodynamical properties of Lennard Jones molecules," Physical Review, Vol. 159, No. 1, 98-103, Jul. 1967.
doi:10.1103/PhysRev.159.98

30. Spriter, Q. and M. Walter, "Classical molecular dynamics simulation with the Velocity Verlet algorithm at strong external magnetic fields," Journal of Computational Physics, Vol. 152, No. 1, 102-119, Jun. 1999.
doi:10.1006/jcph.1999.6237

31. Vaughan, J. R. M., "A new formula for secondary emission yield," IEEE Transactions on Electron Devices, Vol. 36, No. 9, 1963-1967, Sep. 1989.
doi:10.1109/16.34278

32. Somersalo, E., P. Yl-Oijala, and D. Proch, "Electron multipacting in RF structures," Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany, TESLA Rep., 94-14, 1994.

33. Marcuvitz, N., Waveguide Handbook, Peter Peregrinus Ltd., 1993.

34. Collett, E., Field Guide to Polarization, SPIE Press Book, 2005.
doi:10.1117/3.626141