Vol. 50
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-09-12
Correlation Effects on the MIMO Capacity for Conformal Antennas on a Paraboloid
By
Progress In Electromagnetics Research M, Vol. 50, 1-10, 2016
Abstract
The use of conformal antennas in a MIMO link scenario is investigated. Conformal slot antennas are considered both in the transmitter and the receiver. First, a new modified correlation coefficient is derived that goes beyond the Clarke coefficient and takes into account the element radiation pattern. Secondly, a hybrid formulation that accounts for the impact of the mutual coupling and the pattern dependent correlation on the capacity is presented. The mutual coupling for slots placed circumferentially on a paraboloid substrate is derived using a rigorous approach based on Uniform Theory of Diffraction (UTD). The capacity is evaluated for the case of Rayleigh fading channel considering the new pattern dependent correlation coefficient and the conformal antenna mutual coupling. The planar case is included as a limiting case. It is shown that for conformal antennas on a paraboloid the capacity degradation compared to the planar case is up to 0.5 bps/Hz due to coupling and correlation.
Citation
Christos Kalialakis, Theodoros Kaifas, and Apostolos Georgiadis, "Correlation Effects on the MIMO Capacity for Conformal Antennas on a Paraboloid," Progress In Electromagnetics Research M, Vol. 50, 1-10, 2016.
doi:10.2528/PIERM16071803
References

1. Gesbert, D., M. Shafi, D.-S. Shiu, et al. "From theory to practice: An overview of space time coded wireless systems," IEEE Journal on Selected Areas in Communications, Vol. 21, 283-302, 2003.
doi:10.1109/JSAC.2003.809458

2. Foschini, G. J. and M. J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Communications, Vol. 6, No. 3, 311-335, Mar. 1998.
doi:10.1023/A:1008889222784

3. Shiu, D. S., J. Foschini, J. Gans, and J. M. Kahn, "Fading correlation and its effect on the capacity of multielement antenna system," IEEE Transactions on Communications, Vol. 48, 502, 2000.
doi:10.1109/26.837052

4. Clerckx, B. and C. Oestges, MIMO Wireless Networks: Channels, Techniques and Standards for Multi-antenna, Multi-user and Multi-cell Systems, Academic Press, 2013.

5. Nyberg, D., P. S. Kildal, A. Gummalla, and J. Carlsson, "Degradation of MIMO capacity due to correlation and efficiency of practical antennas," International Symposium on Antennas and Propagation, Taipei, Taiwan, Oct. 27-30, 2008.

6. Gesbert, D., H. Bolcskei, D. Gore, and A. Paulraj, "MIMO wireless channels: Capacity and performance prediction," IEEE Global Telecommunications Conference (GLOBECOM’00), Vol. 2, 2000.

7. Varzakas, P., "Average channel capacity for rayleigh fading spread spectrum MIMO systems," International Journal of Communication Systems, Vol. 19, No. 10, 1081-1087, Dec. 2006.
doi:10.1002/dac.784

8. Janaswamy, R., "Effect of mutual coupling on the capacity of fixed length linear arrays," IEEE Antenna and Wireless Propagation Letters, Vol. 1, 157-160, 2002.
doi:10.1109/LAWP.2002.807570

9. Chae, S., S. Oh, and S. Park, "Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 122-125, 2007.
doi:10.1109/LAWP.2007.893109

10. Fei, Y., Y. Fan, B. K. Lau, and J. S. Thompson, "Optimal single-port matching impedance for MIMO capacity maximization," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 11, 3566-3575, Nov. 2008.

11. Kalialakis, C., A. Collado, and A. Georgiadis, "Capacity of linear rectangular microstrip antenna arrays," Proceedings of 3rd European Conference on Antennas and Propagation (EuCAP 2009), Berlin, Germany, Mar. 23-27, 2009.

12. Josefsson, L. and P. Persson, Conformal Array Antenna Theory and Design, John Wiley & Sons, 2006.
doi:10.1002/047178012X

13. Adams, J. J., E. B. Duoss, T F. Malkowski, et al. "Conformal printing of electrically small antennas on three-dimensional surfaces," Advanced Materials, Vol. 23, No. 11, 1335-1340, Mar. 18, 2011.
doi:10.1002/adma.201003734

14. Nikolaou, S., G. E. Ponchak, J. Papapolymerou, and M. M. Tentzeris, "Conformal double exponentially tapered slot antenna (DETSA) on LCP for UWB applications," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 6, 1663-1669, 2006.
doi:10.1109/TAP.2006.875915

15. Boeykens, F., L. Vallozzi, and H. Rogier, "Cylindrical bending of deformable textile rectangular patch antennas," International Journal on Antennas and Propagation, Article ID 17020, 11 pages, 2012.

16. Tunc, C., A. E. Irci, O. Bakir, et al. "Investigation of planar and conformal printed arrays for MIMO performance analysis," European Conference on Antennas and Propagation (EuCAP), 1-6, Nov. 6-10, 2006.
doi:10.1109/TAP.2006.877762

17. Craddock, I. J., D. L. Paul, C. M. Tan, et al. "Investigation of array performance for MIMO channel characterisation," URSI EMTheory Symposium, 69-71, 2004.

18. Orlob, C., Q. H. Dao, and B. Geck, "Conformal log-periodic antenna with integrated feeding network for UWB-MIMO applications," 7th German Microwave Conference (GeMiC), 1-4, Mar. 12-14, 2012.

19. Yetisir, E., D. Psychoudakis, and J. L. Volakis, "Small size conformal UWB arrays for MIMO and diversity applications," IEEE Antennas and Propagation Society International Symposium, Jul. 8-14, 2012.

20. Gamage, J. K. H., B. Holter, J. A. Jensen, et al. "A wideband conformal antenna array for cognitive radio/MIMO applications," European Conference on Antennas and Propagation (EUCAP), 725-729, Apr. 11-15, 2011.

21. Clarke, R. H., "A statistical theory of mobile radio reception," Bell Systems Technical Journal, Vol. 47, No. 6, 957-1000, Jul.-Aug. 1968.
doi:10.1002/j.1538-7305.1968.tb00069.x

22. Petrus, P., J. Reed, and T. S. Rappaport, "Geometrical-based statistical macrocell channel model for mobile environments," IEEE Transactions on Communications, Vol. 50, 495-502, 2002.
doi:10.1109/26.990911

23. Kaifas, T. N., T. Samaras, K. Siakavara, and J. N. Sahalos, "A UTD-OM technique to design slot arrays on a perfectly conducting paraboloid," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 5, 1688-1698, May 2005.
doi:10.1109/TAP.2005.846791

24. Janaswamy, R., "Spatial diversity for wireless communication systems," Handbook of Antennas in Wireless Communications, Chap. 19, L. C. Godara, ed., CRC Press, 2002.

25. Lipschutz, M. M., Differential Geometry, McGraw-Hill, New York, 1995.

26. Pathak, P. and N. Wang, "Ray analysis of mutual coupling between antennas on a convex surface," IEEE Trans. Antennas Propagat., Vol. 29, No. 6, 911-922, 1981.
doi:10.1109/TAP.1981.1142682

27. Pathak, P., N. Wang, W. D. Burnside, and R. Kouyoumjian, "A uniform GTD solution for the radiation from sources on a convex surface," IEEE Trans. Antennas Propagat., Vol. 29, No. 4, 609-622, 1981.
doi:10.1109/TAP.1981.1142636

28. Wu, K. and B. Ottersten, "Models for MIMO propagation channels - A review," Wirel. Commun. Mob. Comput., 653-666, 2002.

29. Pozar, D., Microwave Engineering, Addison-Wesley, 1993.

30. Kalialakis, C., D. Anagnostou, and M. Chryssomallis, "Mutual coupling effects on the MIMO capacity using dual band Wi-Fi double-T printed antennas," 2015 IEEE AP-S Symposium on Antennas and Propagation, Vancoover, Canada, Jul. 2015.

31. Von Winckel, G., "Legendre-Gauss quadrature weights and nodes,", authored 25/2/2004, Available at http://www.mathworks.com/matlabcentral/fileexchange/4540-legendre-gauss-quadratureweights-and-nodes/content/lgwt.m.

32. Kaifas, T. N., "Study of systems of conformal arrays,", PhD. Dissertation (in Greek), Dept. of Physics, Aristotle University of Thessaloniki, Greece, 2003.