Vol. 51
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-10-28
Assessment of Materials for High-Speed PMSMs Having a Tooth-Coil Topology
By
Progress In Electromagnetics Research M, Vol. 51, 101-111, 2016
Abstract
In this paper, materials frequently used in high-speed (HS) electrical machines are assessed. Highspeed permanent magnet synchronous machines with a special tooth-coil topology serve as an example for the assessment. The lamination and rotor sleeve materials are compared taking into account their price, per unit losses, resistivity, and other factors. The resulting tables provide the electrical machine designer with a means to enhance the HS machine performance at low costs.
Citation
Nikita Uzhegov, Nikolai Efimov-Soini, and Juha Pyrhönen, "Assessment of Materials for High-Speed PMSMs Having a Tooth-Coil Topology," Progress In Electromagnetics Research M, Vol. 51, 101-111, 2016.
doi:10.2528/PIERM16080604
References

1. Chau, K.-T., W. Li, and C. H. T. Lee, "Challenges and opportunities of electric machines for renewable energy," Progress In Electromagnetics Research B, Vol. 42, 45-74, 2012.
doi:10.2528/PIERB12052001        Google Scholar

2. Misron, N. B., S. Rizuan, R. N. Firdaus, C. Aravind Vaithilingam, H. Wakiwaka, and M. Nirei, "Comparative evaluation on power-speed density of portable permanent magnet generators for agricultural application," Progress In Electromagnetics Research, Vol. 129, 345-363, 2012.
doi:10.2528/PIER12050101        Google Scholar

3. Gerada, D., A. Mebarki, N. Brown, C. Gerada, A. Cavagnino, and A. Boglietti, "High-speed electrical machines: Technologies, trends, and developments," IEEE Transactions on Industrial Electronics, Vol. 61, No. 6, 2946-2959, Jun. 2014.
doi:10.1109/TIE.2013.2286777        Google Scholar

4. Pyrhönen, J., J. Nerg, P. Kurronen, and U. Lauber, "High-speed high-output solid-rotor induction-motor technology for gas compression," IEEE Transactions on Industrial Electronics, Vol. 57, No. 1, 272-280, Jan. 2010.
doi:10.1109/TIE.2009.2021595        Google Scholar

5. Touati, S., R. Ibtiouen, O. Touhami, and A. Djerdir, "Experimental investigation and optimization of permanent magnet motor based on coupling boundary element method with permeances network," Progress In Electromagnetics Research, Vol. 111, 71-90, 2011.
doi:10.2528/PIER10092303        Google Scholar

6. Riemer, B., M. Lessmann, and K. Hameyer, "Rotor design of a high-speed permanent magnet synchronous machine rating 100,000 rpm at 10 kw," Proc. IEEE ECCE, 3978-3985, Sep. 2010.        Google Scholar

7. Jiang, W. and T. Jahns, "Coupled electromagnetic-thermal analysis of electric machines including transient operation based on finite-element techniques," IEEE Transactions on Industry Applications, Vol. 51, No. 2, 1880-1889, Mar. 2015.
doi:10.1109/TIA.2014.2345955        Google Scholar

8. Pesch, A., A. Smirnov, O. Pyrhönen, and J. Sawicki, "Magnetic bearing spindle tool tracking through m-synthesis robust control," IEEE ASME Transactions on Mechatronics, Vol. 20, No. 3, 1448-1457, Jun. 2015.
doi:10.1109/TMECH.2014.2344592        Google Scholar

9. Bianchi, N., S. Bolognani, and F. Luise, "Potentials and limits of high-speed PM motors," IEEE Transactions on Industry Applications, Vol. 40, No. 6, 1570-1578, Nov. 2004.
doi:10.1109/TIA.2004.836173        Google Scholar

10. Kolondzovski, Z., A. Arkkio, J. Larjola, and P. Sallinen, "Power limits of high-speed permanent-magnet electrical machines for compressor applications," IEEE Transactions on Energy Conversion, Vol. 26, No. 1, 73-82, Mar. 2011.
doi:10.1109/TEC.2010.2089459        Google Scholar

11. Chen, M., K.-T. Chau, C. H. T. Lee, and C. Liu, "Design and analysis of a new axial-field magnetic variable gear using pole-changing permanent magnets," Progress In Electromagnetics Research, Vol. 153, 23-32, 2015.
doi:10.2528/PIER15072701        Google Scholar

12. Uzhegov, N., J. Pyrhönen, and S. Shirinskii, "Loss minimization in high-speed permanent magnet synchronous machines with tooth-coil windings," Proc. IEEE IECON, 2960-2965, Nov. 2013.        Google Scholar

13. Xu, G., L. Jian, W. Gong, and W. Zhao, "Quantitative comparison of flux-modulated interior permanent magnet machines with distributed and concentrated windings," Progress In Electromagnetics Research, Vol. 129, 109-123, 2012.
doi:10.2528/PIER12040901        Google Scholar

14. Lim, M.-S., S.-H. Chai, J.-S. Yang, and J.-P. Hong, "Design and verification of 150-krpm pmsm based on experiment results of prototype," IEEE Transactions on Industrial Electronics, Vol. 62, No. 12, 7827-7836, Dec. 2015.
doi:10.1109/TIE.2015.2409804        Google Scholar

15. Salonen, M. and M. Perttula, "Utilization of concept selection methods: A survey of finnish industry," Proc. ASME IDETC/CIE, 527-535, Sep. 2005.        Google Scholar

16. Pyrhönen, J., V. Ruuskanen, J. Nerg, J. Puranen, and H. Jussila, "Permanent-magnet length effects in AC machines," IEEE Transactions on Magnetics, Vol. 46, No. 10, 3783-3789, Oct. 2010.
doi:10.1109/TMAG.2010.2050002        Google Scholar

17. Uzhegov, N., J. Nerg, and J. Pyrhönen, "Design of 6-slot 2-pole high-speed permanent magnet synchronous machines with tooth-coil windings," Proc. XXIst ICEM, 2537-2542, Sep. 2014.        Google Scholar

18. Borisavljevic, A., H. Polinder, and J. Ferreira, "On the speed limits of permanent-magnet machines," IEEE Transactions on Industrial Electronics, Vol. 57, No. 1, 220-227, Jan. 2010.
doi:10.1109/TIE.2009.2030762        Google Scholar

19. Zhao, W., M. Cheng, R. Cao, and J. Ji, "Experimental comparison of remedial single-channel operations for redundant flux-switching permanent-magnet motor drive," Progress In Electromagnetics Research, Vol. 123, 189-204, 2012.
doi:10.2528/PIER11110405        Google Scholar

20. Binder, A. and T. Schneider, "High-speed inverter-fed ac drives," Proc. ACEMP’07 Int. Aegean Conf., 9-16, Sep. 2007.        Google Scholar

21. Pugh, S., Creating Innovative Products Using Total Design: The Living Legacy of Stuart Pugh, edited by D. Clausing and R. Andrade, Addison-Wesley, 1996.

22. Saaty, T. L., The Analytic Hierarchy Process, McGraw-Hill, 1980.

23. Matzen, M., M. Alhajji, and Y. Demirel, "Chemical storage of wind energy by renewable methanol production: Feasibility analysis using a multi-criteria decision matrix," Energy, Vol. 93, 343-353, 2015.
doi:10.1016/j.energy.2015.09.043        Google Scholar

24. Girones, V., S. Moret, F. Marechal, and D. Favrat, "Strategic energy planning for large-scale energy systems: A modelling framework to aid decision-making," Energy, Vol. 90, 173-186, 2015.
doi:10.1016/j.energy.2015.06.008        Google Scholar

25. Thakker, A., J. Jarvis, M. Buggy, and A. Sahed, "3dcad conceptual design of the next-generation impulse turbine using the pugh decision-matrix," Materials and Design, Vol. 30, No. 7, 2676-2684, 2009.
doi:10.1016/j.matdes.2008.10.011        Google Scholar

26. Ullman, D. G., The Mechanical Design Process, McGraw-Hill, 2010.

27. Okudan, G. and S. Tauhid, "Concept selection methods - A literature review from 1980 to 2008," International Journal of Design Engineering, Vol. 1, No. 3, 243-277, 2008.
doi:10.1504/IJDE.2008.023764        Google Scholar

28. Nasiri-Zarandi, R., M. Mirsalim, and A. Cavagnino, "Analysis, optimization, and prototyping of a brushless dc limited-angle torque-motor with segmented rotor pole tip structure," IEEE Transactions on Industrial Electronics, Vol. 62, No. 8, 4985-4993, Aug. 2015.
doi:10.1109/TIE.2015.2402115        Google Scholar

29. Dziadak, B. and A. Michalski, "Evaluation of the hardware for a mobile measurement station," IEEE Transactions on Industrial Electronics, Vol. 58, No. 7, 2627-2635, Jul. 2011.
doi:10.1109/TIE.2010.2093478        Google Scholar

30. Meyar-Naimi, H. and S. Vaez-ZAdeh, "Sustainability assessment of a power generation system using dsr-hns framework," IEEE Transactions on Energy Conversion, Vol. 28, No. 2, 327-334, Jun. 2013.
doi:10.1109/TEC.2013.2253610        Google Scholar

31. Chedid, R., H. Akiki, and S. Rahman, "A decision support technique for the design of hybrid solar-wind power systems," IEEE Transactions on Energy Conversion, Vol. 13, No. 1, 76-83, Mar. 1998.
doi:10.1109/60.658207        Google Scholar

32. Cogent "Non-oriented electrical steel,", [Online]. Available: http://cogent-power.com/, 2016.        Google Scholar

33. Senda, K., M. Namikawa, and Y. Hayakawa, "Electrical steels for advanced automobiles - Core materials for motors, generators, and high-frequency reactors," JFE Technical Report, Vol. 4, 67-73, 2004.        Google Scholar

34. Tarter, R. E., Solid-state Power Conversion Handbook, John Wiley & Sons, 1993.

35. Nasar, S. A. and L. E. Unnewehr, Electromechanics and Electric Machines, John Wiley & Sons, 1979.

36. Kolondzovski, Z., A. Belahcen, and A. Arkkio, "Comparative thermal analysis of different rotor types for a high-speed permanent-magnet electrical machine," IET Electric Power Applications, Vol. 3, No. 4, 279-288, Jul. 2009.
doi:10.1049/iet-epa.2008.0208        Google Scholar

37. Clemens, S. L. and W. C. Faulkner, Engineered Materials Handbook, ASM, 1991.

38. Yon, J., P. Mellor, R. Wrobel, J. Booker, and S. Burrow, "Analysis of semipermeable containment sleeve technology for high-speed permanent magnet machines," IEEE Transactions on Energy Conversion, Vol. 27, No. 3, 646-653, Sep. 2012.
doi:10.1109/TEC.2012.2202232        Google Scholar

39. Uzhegov, N., E. Kurvinen, J. Nerg, J. Pyrhönen, J. Sopanen, and S. Shirinskii, "Multidisciplinary design process of a 6-slot 2-pole high-speed permanent-magnet synchronous machine," IEEE Transactions on Industrial Electronics, Vol. 63, No. 2, 784-795, Feb. 2016.
doi:10.1109/TIE.2015.2477797        Google Scholar