Vol. 64
Latest Volume
All Volumes
PIERL 123 [2024] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-11-27
Design, Simulation, and Fabrication of a Novel Type of Inkjet-Printed Pixel Antennas
By
Progress In Electromagnetics Research Letters, Vol. 64, 51-55, 2016
Abstract
We present a novel type of pixel antennas that are suitable for fabrication in low-cost setups based on commercial inkjet printers. The proposed antennas involve hexagonal cells that can be removed in accordance with rigorous optimizations via genetic algorithms that are supported by full-wave solutions with the multilevel fast multipole algorithm. Optimal pixel configurations are determined precisely for desired electrical characteristics, such as low power-reflection values at required frequencies. Measurements on fabricated samples demonstrate the effectiveness of the optimizations, as well as the favorable characteristics of the hexagonal-cell pixel antennas that fully benefit from the advantages of low-cost inkjet printing.
Citation
Sadri Guler, Bariscan Karaosmanoglu, and Ozgur Ergul, "Design, Simulation, and Fabrication of a Novel Type of Inkjet-Printed Pixel Antennas," Progress In Electromagnetics Research Letters, Vol. 64, 51-55, 2016.
doi:10.2528/PIERL16081602
References

1. Nikitin, P. V., S. Lam, and K. V. S. Rao, "Low cost silver ink RFID tag antennas," Proc. IEEE Antennas and Propagation Soc. Int. Symp., 353-356, Washington DC, USA, July 2005.

2. Yang, L., R. W. Zhang, D. Staiculescu, C. P. Wong, and M. M. Tentzeris, "Novel conformal RFID-enabled module utilizing inkjet-printed antennas and carbon nanotubes for gas-detection applications," IEEE Antennas Wireless Propag. Lett., Vol. 8, 653-656, 2009.
doi:10.1109/LAWP.2009.2024104

3. Vyas, R., V. Lakafosis, A. Rida, N. Chaisilwattana, S. Travis, J. Pan, and M. M. Tentzeris, "Paper-based RFID-enabled wireless platforms for sensing applications," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 5, 1370-1382, May 2009.
doi:10.1109/TMTT.2009.2017317

4. Rida, A., L. Yang, R. Vyas, and M. M. Tentzeris, "Conductive inkjet printed antennas on flexible low-cost paper-based substrates for RFID and WSN applications," IEEE Antennas Propag. Mag., Vol. 51, No. 3, 13-23, June 2009.
doi:10.1109/MAP.2009.5251188

5. Cook, B. S. and A. Shamim, "Inkjet printing of novel wideband and high gain antennas on low-cost paper substrate," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4148-4156, September 2012.
doi:10.1109/TAP.2012.2207079

6. Maza, A. R., B. Cook, G. Jabbour, and A. Shamim, "Paper-based inkjet-printed ultra-wideband fractal antennas," Microwaves, Antennas & Propagation, IET, Vol. 6, No. 12, 1366-1373, September 2012.
doi:10.1049/iet-map.2012.0243

7. Subbaraman, H., D. T. Pham, X. Xu, M. Y. Chen, A. Hosseini, X. Lu, and R. T. Chen, "Inkjet-printed two-dimensional phased-array antenna on a flexible substrate," IEEE Antennas Wireless Propag. Lett., Vol. 12, 170-173, 2013.
doi:10.1109/LAWP.2013.2245292

8. Onol, C., T. Ciftci, S. Kucuk, B. Karaosmanoglu, and O. Ergul, "Design, simulation, and fabrication of low-cost inkjet antennas," PIERS Proceedings, 2829-2833, Prague, July 6-9, 2015.

9. Onol, C. and O. Ergul, "Optimizations of patch antenna arrays using genetic algorithms supported by the multilevel fast multipole algorithm," Radioengineering, Vol. 23, No. 4, 1005-1014, December 2014.