Vol. 64
Latest Volume
All Volumes
PIERL 123 [2024] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-12-12
Design of an Interdigital Band-Pass Filter for Out-of-Band Rejection Improvement
By
Progress In Electromagnetics Research Letters, Vol. 64, 105-110, 2016
Abstract
In this letter, an interdigital band-pass filter is proposed for out-of-band rejection improvement. Seven quarter-wavelength resonators are employed to form the passband. Three extra transmission zeros (TZs) on both sides of the passband are implemented by introducing source-load coupling and dumbbell defected ground structures (DGS). As demonstrated by the measured results, out-of-band rejection and selectivity are improved by these three TZs, and good performances are achieved. The proposed method of increasing out-of-band rejection is feasible and applicable in the design of modern microstrip filters.
Citation
Weiping Li, Xin Cao, Haodong Lin, and Zong-Xi Tang, "Design of an Interdigital Band-Pass Filter for Out-of-Band Rejection Improvement," Progress In Electromagnetics Research Letters, Vol. 64, 105-110, 2016.
doi:10.2528/PIERL16102605
References

1. Lai, Z., Z. Tang, X. Zhan, et al. "Compact multi-band transversal bandpass filters with source-load coupling," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 2, 184-193, 2014.
doi:10.1080/09205071.2013.860362

2. Jankovic, N., V. Radonic, V. Crnojevic-Bengin, et al. "A compact dual-band bandpass filter using folded quarter-wavelength resonators," 2012 42nd European Microwave Conference (EuMC), IEEE, 360-363, 2012.

3. Jankovic, N., V. Radonic, and V. Crnojevic-Bengin, "Compact tri-band bandpass filter based on quarter-wavelength resonators," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 6, 750-757, 2013.
doi:10.1080/09205071.2013.786206

4. Yang, Z., L. Zhang, Z. Ma, et al. "Design of a compact dual-band dual-mode microstrip filter with an adjustable transmission zero," 2012 IEEE MTT-S International Microwave Symposium Digest (MTT), IEEE, 1-3, 2012.

5. Wang, L., C. Zhao, C. Li, et al. "Dual-band bandpass filter using stub loaded resonators with multiple transmission zeros," 2010 9th International Symposium on Antennas Propagation and EM Theory (ISAPE), IEEE, 1208-1211, 2010.

6. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 1, 1-10, 2003.
doi:10.1109/TMTT.2002.806937

7. Zhou, M., X. Tang, and F. Xiao, "Compact dual band bandpass filter using novel E-type resonators with controllable bandwidths," Microwave and Wireless Components Letters, IEEE, Vol. 18, No. 12, 779-781, 2008.
doi:10.1109/LMWC.2008.2007696

8. Sun, S., L. Zhu, and H. H. Tan, "A compact wideband bandpass filter using transversal resonator and asymmetrical interdigital coupled lines," Microwave and Wireless Components Letters, IEEE, Vol. 18, No. 3, 173-175, 2008.
doi:10.1109/LMWC.2008.916780

9. Pozar, D. M., Microwave Engineering, 4th Ed., John Wiley & Sons Inc., 2012.

10. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems: Fundamentals, Design, and Applications, John Wiley & Sons Inc., 2007.

11. Hong, J.-S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons Inc., 2001.
doi:10.1002/0471221619

12. Montejo-Garai, J. R., "Synthesis of N-even order symmetric filters with N transmission zeros by means of source-load cross coupling," Electronics Letters, Vol. 36, No. 3, 232-233, 2000.
doi:10.1049/el:20000242

13. Amari, S., "Direct synthesis of folded symmetric resonator filters with source-load coupling," IEEE Microwave & Wireless Components Letters, Vol. 11, No. 6, 264-266, 2001.
doi:10.1109/7260.928933

14. Boutejdar, A., A. Omar, M. Al Sharkawy, et al. "A simple transformation of improved WLAN band pass to low pass filter using defected ground structure (DGS), defected microstrip structure (DMS) and multilayer-technique," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 12, No. 1, 111-130, 2013.
doi:10.1590/S2179-10742013000100010

15. Khan, M. T., M. A. Zakariya, M. N. M. Saad, et al. "Tuning of end-coupled line bandpass filter for 2.4GHz using defected ground structure (DGS) parameters," Business Engineering and Industrial Applications Colloquium (BEIAC), 2013 IEEE, 131-134, 2013.
doi:10.1109/BEIAC.2013.6560098