1. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablanovitch, "Highimpedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001 Google Scholar
2. Yang, F. and Y. Rahmat-Samii, "A low profile circularly polarized curl antenna over an EBG surface," Microwave Optical Tech. Lett., Vol. 31, No. 4, 264–7, 2001.
doi:10.1002/mop.10006 Google Scholar
3. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with Electromagnetic Band-Gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2003. Google Scholar
4. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterization of an Electromagnetic Band- Gap (EBG) surface," Proc. IEEE AP-S Dig., Vol. 3, 744-747, 2002. Google Scholar
5. Elsheakh, N., H. A. Elsadek, and E. A. Abdallah, "Investigated new embedded shapes of electromagnetic band gap structures and via effect for improved microstrip patch antenna performanced," Progress In Electromagnetics Research B, Vol. 20, 91-107, 2010.
doi:10.2528/PIERB09122004 Google Scholar
6. Gujral, M., J. L.-W. Li, T. Yuan, and C.-W. Qiu, "Bandwidth improvement of microstrip antenna array using dummy EBG pattern feedline," Progress In Electromagnetics Research, Vol. 127, 79-92, 2012.
doi:10.2528/PIER12022807 Google Scholar
7. Bucci, O. M., T. Isernia, and A. F. Morabito, "Optimal synthesis of circularly symmetric shaped beams," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 1954-1964, 2014.
doi:10.1109/TAP.2014.2302842 Google Scholar
8. Ikeuchi, R. and A. Hirata, "Dipole antenna above EBG substrate for local SAR reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 904-906, 2011.
doi:10.1109/LAWP.2011.2167119 Google Scholar
9. Zhang, J., J. Wang, M. Chen, and Z. Zhang, "RCS reduction of patch array antenna by Electromagnetic Band-Gap structure," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1048-1051, 2012.
doi:10.1109/LAWP.2012.2215832 Google Scholar
10. Kurra, L., M. P. Abegaonkar, A. Basu, and S. K. Koul, "Switchable and tunable notch in ultra-wideband filter using electromagnetic bandgap structure," EEE Microwave and Wireless Components Letters, Vol. 24, No. 12, 2014. Google Scholar
11. El Ghabzouri, M., A. Es Salhi, and P. M. Mendes, "New technique to drive the central frequency and to improve bandwidth of EBG structures," IEEE Mediterranean Microwave Symposium 2015 (MMS 2015), Lecce, Italy, 2015. Google Scholar
12. El Ghabzouri, M., A. Es Salhi, and P. M. Mendes, "Shifting the half wave dipole antenna resonance using EBG structure," IEEE International Conference of Microelectronics 2015 (ICM 2015), Casablanca, Morocco, 2015. Google Scholar
13. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2008.
doi:10.1017/CBO9780511754531
14. Fallah, M., F. Hojat-Kashani, and S. H. M. Armaki, "Side effect characterization of EBG structures in microstrip patch antenna," PIERS Proceedings, 323-326, Cambridge, USA, July 5–8, 2010. Google Scholar
15. Alam, M. S., M. T. Islam, and N. Misran, "A novel compact split ring slotted electromagnetic band gap structure for microstrip patch antenna performance enhancement," Progress In Electromagnetics Research, Vol. 130, 389-409, 2012.
doi:10.2528/PIER12060702 Google Scholar
16. Ikeuchi, R., K. H. Chan, and A. Hirata, "SAR and radiation characteristics of a dipole antenna above different finite EBG substrates in the presence of the realistic head model in the 3.5 GHz band," Progress In Electromagnetics Research B, Vol. 44, 53-70, 2012.
doi:10.2528/PIERB12072005 Google Scholar
17. Kulkarni, V. A. and V. S. Navale, "Performance measurement of polarization diversity printed dipole antenna using hight frequency pin diode for WLAN," International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol. 2, 1917-1923, 2013. Google Scholar
18. Ma, X., S. Mi, and Y. H. Lee, "Design of a microstrip antenna using square Sierpinski fractal EBG structure," IEEE 4th Asia-Pacific Conference on Antenna and Propagation (APCAP), 2015. Google Scholar
19. McMichael, I. T., E. C. Nallon, V. P. Waymond, R. Scott, Jr., and M. S. Mirotznik, "EBG antenna for GPR colocated with a mital detector for landmine detection," IEEE Geoscience and Remote Sensing Letters, 1-5, 2013. Google Scholar
20. Kaharpardeshi, K. T., S. UvaidUllah, and S. Zafar, "Influence of circular patched EBG substrate on SAR and far-field pattern of dipole phase-array antenna," 2014 IEEE Students’ Conference on Electrical, Electronics and Computer Science, SCEECS, 2014. Google Scholar
21., Printed dipole antenna with integrated balun, CST 2014.
22., IEEE Std C95.1TM-2005 (Revision of IEEE Std C95.1-1991), April 19, 2006.
23. Rahim, T. and J. Xu, "Design of high gain and wide band EBG resonator antenna with dual layers of same dielectric superstrate at X-bands," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 15, No. 2, 2016.
doi:10.1590/2179-10742016v15i2558 Google Scholar
24. Hoang, T. V., T. T. Le, Q. Y. Li, and H. C. Park, "Quad-band circularly polarized antenna for 2.4/5.3/5.8 GHz WLAN and 3.5 GHz WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1032-1035, 2015. Google Scholar
25. Ayop, O. and M. K. A. Rahim, "Analysis of Mushroom-like electromagnetic band gap structure using suspended transmission line technique," 2011 IEEE International RF and Microwave Conference (RFM 2011), Seremban, Malaysia, 2011. Google Scholar