1. Garg, V. K., Wireless Communications and Networks, Morgan Kaufmann Publishers, Elsevier, 2007.
2. Larmo, A., M. Lindstrom, M. Meyer, G. Pelletier, J. Torsner, and H. Wiemann, "The LTE linklayer design," IEEE Communications Magazine, Vol. 47, No. 4, 52-59, Apr. 2009.
doi:10.1109/MCOM.2009.4907407 Google Scholar
3. Foschini, G. J. and M. J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Communications, Vol. 6, 311-335, Mar. 1998.
doi:10.1023/A:1008889222784 Google Scholar
4. Telatar, E., "Capacity of multi-antenna Gaussian channels," European Transactions on Telecommunications, Vol. 10, No. 6, 585-595, Nov. 1999.
doi:10.1002/ett.4460100604 Google Scholar
5. Ludwig, A., "Mutual coupling, gain and directivity of an array of two identical antennas," IEEE Transactions on Antennas and Propagation, Vol. 24, No. 6, 837-841, Nov. 1976.
doi:10.1109/TAP.1976.1141440 Google Scholar
6. Lau, B. K. and Z. Ying, "Antenna design challenges and solutions for compact MIMO terminals," IEEE International Workshop on Antenna Technology (iWAT), 70-73, Apr. 2011. Google Scholar
7. Yang, X. M., X. G. Liu, X. Y. Zhou, and T. J. Cui, "Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 389-391, Apr. 2012.
doi:10.1109/LAWP.2012.2193111 Google Scholar
8. Lee, C. H., S. Y. Chen, and P. Hsu, "Integrated dual planar inverted-F antenna with enhanced isolation," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 963-965, Aug. 2009. Google Scholar
9. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 876-878, Sep. 2010.
doi:10.1109/LAWP.2010.2074175 Google Scholar
10. Cheng, C., F. Zhang, Y. Wan, and F. Zhang, "Miniaturized high-isolation dual-frequency orthogonally polarized patch antenna using compact electromagnetic bandgap filters," International Journal of Antennas and Propagation, Apr. 2014. Google Scholar
11. Chen, S. C., Y. S. Wang, and S. J. Chung, "A decoupling technique for increasing the port isolation between two strongly coupled antennas," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 12, 3650-3658, Dec. 2008.
doi:10.1109/TAP.2008.2005469 Google Scholar
12. Zhao, L., L. K. Yeung, and K. L. Wu, "A coupled resonator decoupling network for two-element compact antenna arrays in mobile terminals," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2767-2778, May 2014.
doi:10.1109/TAP.2014.2308547 Google Scholar
13. Ghosh, J., S. Ghosal, D. Mitra, and S. R. Bhadra Chaudhuri, "Mutual coupling reduction between closely placed microstrip patch antenna using meander line resonator," Progress In Electromagnetics Research Letters, Vol. 59, 115-122, 2016.
doi:10.2528/PIERL16012202 Google Scholar
14. Ray, K. P., S. Ghosh, and K. Nirmala, "Multilayer multiresonator circular microstrip antennas for broadband and dual-band operations," Microwave and Optical Technology Letters, Vol. 47, 489-494, Dec. 2005.
doi:10.1002/mop.21208 Google Scholar
15. Guha, D. and J. Y. Siddiqui, "Resonant frequency of equilateral triangular microstrip antenna with and without air gap," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 8, 2174-2178, Aug. 2004.
doi:10.1109/TAP.2004.832504 Google Scholar
16. Li, L., Y. Yu, and L. Yi, "Mutual coupling reduction between printed dual-frequency antenna arrays," Progress In Electromagnetics Research Letters, Vol. 59, 63-69, 2016.
doi:10.2528/PIERL16020601 Google Scholar
17. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopoulos, and E. Yablonovitch, "Highimpedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory Techniques, Vol. 47, 2059-2074, Nov. 1999. Google Scholar
18. Yeo, J. and R. Mittra, "Bandwidth enhancement of multiband antennas using frequency selective surfaces for ground planes," IEEE International Symposium on Antennas and Propagation Society, Vol. 4, 366-369, Jul. 2001. Google Scholar
19. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Communications Magazine, Vol. 52, No. 9, 2403-2414, Sep. 2004. Google Scholar
20. Marrocco, G., "Gain-optimized self-resonant meander line antennas for RFID applications," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 302-305, Jan. 2003.
doi:10.1109/LAWP.2003.822198 Google Scholar
21., 3GPP TS 36.101, V8.3.0, EUTRA User Equipment Radio Transmission and Reception, 2008.
22. Li, H., J. Xiong, and S. He, "A compact planar MIMO antenna system of four elements with similar radiation characteristics and isolation structure," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1107-1110, Oct. 2009. Google Scholar
23. Min, K. S., D. J. Kim, and Y. M. Moon, "Improved MIMO antenna by mutual coupling suppression between elements," The European Conference on Wireless Technology, 125-128, Paris, France, Oct. 2005. Google Scholar
24., ANSYS HFSS ver. 13.0.0, ANSYS, Canonsburg, PA, USA, 2011, [online], available: http://www.ansys.com.
25. Ghosh, S., T. N. Tran, and T. Le-Ngoc, "Miniaturized four-element diversity PIFA," IEEE Antennas Wireless Propagation Letters, Vol. 12, 396-400, Mar. 2013.
doi:10.1109/LAWP.2013.2251856 Google Scholar
26., CST Microwave Studio, [online], available: http://www.cst.com.
27. Karaboikis, M. P., V. C. Papamichael, G. F. Tsachtsiris, C. F. Soras, and V. T.Makios, "Integrating compact printed antennas onto small diversity/MIMO terminals," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 7, 2067-2078, Jul. 2008.
doi:10.1109/TAP.2008.924677 Google Scholar
28. Taga, T., "Analysis for mean effective gain of mobile antennas in land mobile radio environments," IEEE Transactions on Vehicular Technology, Vol. 39, 117-131, May 1990.
doi:10.1109/25.54228 Google Scholar
29. Taga, T., "Analysis of correlation characteristics of antenna diversity in land mobile radio environments," Electronics and Communications in Japan, Part I, Vol. 74, No. 8, 101-116, 1991.
doi:10.1002/ecja.4410740810 Google Scholar
30. Schwartz, M., W. R. Bennett, and S. Stein, Communication System and Techniques, 470-474, McGraw-Hill, New York, 1965.
31. Pierce, J. N. and S. Stein, "Multiple diversity with non independent fading," Proceedings of the IRE, Vol. 48, 89-104, Jan. 1960.
doi:10.1109/JRPROC.1960.287384 Google Scholar
32. Rao, Q. and K. Wilson, "Design, modeling and evaluation of a multiband MIMO/diversity antenna system for small wireless mobile terminals," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 1, 410-419, Mar. 2011.
doi:10.1109/TCPMT.2010.2101234 Google Scholar
33. Zhang, S., A. A. Glazunov, Z. Ying, and S. He, "Reduction of the envelope correlation coefficient with improved total efficiency for mobile LTE MIMO antenna arrays: Mutual scattering mode," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 6, 3280-3291, Jun. 2013.
doi:10.1109/TAP.2013.2248071 Google Scholar
34. Lee, B., F. J. Harackiewicz, and H. Wi, "Closely mounted mobile handset MIMO antenna for LTE13 band application," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 411-414, Feb. 2014. Google Scholar
35. Yetisir, E., C. C. Chen, and J. L. Volakis, "Low profile UWB 2-port antenna with high isolation," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 55-58, 2014.
doi:10.1109/LAWP.2013.2296045 Google Scholar