Vol. 54
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-02-17
Monte-Carlo-Based Impulse Response Modeling for Underwater Wireless Optical Communication
By
Progress In Electromagnetics Research M, Vol. 54, 137-144, 2017
Abstract
In underwater wireless optical communication links, the suspended particles in the water can lead to multi-path transmission of the light, causing the temporal dispersion and attenuation of beam pulse. The scattering phase function is a key parameter to model angle scattering in the Monte Carlo simulation and can be approximated by the commonly used Henyey-Greenstein (HG) phase function, but in turbid sea water environment, the HG phase function cannot match well with the measured value of the particle phase function. In this work, instead of using the HG phase function, we make use of the Petzold's measured data value of the scattering phase function in turbid sea water. We propose a numerical solution for the computing of the scattering angle based on the measured particle phase function and present the difference of effect on temporal dispersion between the measurement and HG phase function. Numerical results show that our model is more accurate than the widely used HG model. An analytic double Gamma function is used to fit the Monte Carlo simulation results, and a good fit is found between the double Gamma function and the Monte Carlo simulations.
Citation
Feibiao Dong, Limei Xu, Dagang Jiang, and Tianhong Zhang, "Monte-Carlo-Based Impulse Response Modeling for Underwater Wireless Optical Communication," Progress In Electromagnetics Research M, Vol. 54, 137-144, 2017.
doi:10.2528/PIERM16112403
References

1. Giles, J. W. and I. Bankman, "Underwater optical communications systems. Part 2: Basic design considerations," IEEE Military Communication Conf. (MILCOM), 1700-1705, Atlantic City, NJ, Oct. 3, 2005.

2. Anguita, D., D. Brizzolara, and G. Parodi, "Building an underwater wireless sensor network based on optical communication: Research challenges and current results," Int. Conf. On Sensor Technologies and Applications (SENSORCOMM), 476-479, Athens Gree, Aug. 2009.

3. Zhang, H. and Y. Dong, "Impulse response modeling for general underwater wireless optical MIMO links," IEEE Communications Magazine, Vol. 54, No. 2, 56-61, 2016.
doi:10.1109/MCOM.2016.7402261

4. Cohenour, B. M. and L. J. Mullen, "Channel response measurements for diffuse non-line-sight (NLOS) optical communication links underwater," Proc. 2011 IEEE Oceans Conf., 1-5, 2011.

5. Gabriel, C., M. Khalighi, S. Bourenane, P. Leon, and V. Rigaud, "Channel modeling for underwater optical communication," Proc. 2011 IEEE Workshop on Optical Wireless Communication, Globecom Conf., 833-837, 2011.
doi:10.1109/GLOCOMW.2011.6162571

6. Liang, B., H. Zhu, and W. Chen, "Simulation of laser communication channel from atmosphere to ocean," ACTA Optical Sinica, Vol. 27, No. 2, 0253-2239, 2007.

7. Dalgeish, F., F. Caimi, and A. Vuorenkoski, "Efficient laser pulse dispersion codes for turbid undersea imaging and communications applications," Proc. of SPIE, Vol. 7678, 1-12, 2010.

8. Jaruwatanadilok, S., "Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory," IEEE Journal on Slected Areas in Communications, Vol. 26, No. 9, 1620-1627, 2008.
doi:10.1109/JSAC.2008.081202

9. Hanson, F. and S. Radic, "High bandwidth underwater optical communication," Appl. Opt., Vol. 47, No. 2, 277-283, 2008.
doi:10.1364/AO.47.000277

10. Gabriel, C., M. Khalighi, S. Bourenane, P. Leon, and V. Rigaud, "Monte-Carlo-based channel characterization for underwater optical communication systems," J. Opt. Commun. Netw, Vol. 8, No. 1, 1-12, 2013.
doi:10.1364/JOCN.5.000001

11. Petzold, T., "Volume scattering functions for selected ocean waters,", 70-78, SIO Ref., Scripps Institution of Oceanography Visibility Laboratory, San Diego, CA, 1972.

12. Mobley, C. D., Light and Water: Radiative Transfer in Natural Waters, Academic Press, 1994.

13. Li, J., Y. Ma, Q. Zhou, B. Zhou, and H. Wang, "Monte Carlo study on pulse response of underwater optical channel," Optical Engineering, Vol. 51, No. 6, 1-5, 2012.

14. Winker, D. M. and L. R. Poole, "Monte Carlo calculation of cloud returns for ground-based and space-based lidars," APPI. Phy. B, Vol. 60, No. 4, 341-344, 1995.
doi:10.1007/BF01082269

15. Yang, C. C. and K. C. Yeh, "Scattering from a multiple-layered random medium," J. Opt. Soc. Am., Vol. 2, No. 12, 2112-2119, 1985.
doi:10.1364/JOSAA.2.002112

16. Pral, S. A., M. Keijzer, and S. L. Jacques, "A Monte Carlo of light propagation in tissue," SPIE Proceedings, Vol. 5, 102-111, 1989.

17. Mooradian, G. and M. Celler, "Temporal and angular spreading of bluegreen pulses in clouds," Applied Optics, Vol. 21, No. 9, 1572-1577, 1982.
doi:10.1364/AO.21.001572

18. Tang, S., Y. Dong, and X. Zhang, "On impulse response modeling for underwater wireless optical links," Proc. 2013 IEEE/MTS Ocean Conf., 1-4, 2013.

19. Tang, S., Y. Dong, and X. Zhang, "Impulse response modeling for underwater wireless optical communication links," IEEE Trans. Commun., Vol. 62, No. 1, 226-234, 2014.
doi:10.1109/TCOMM.2013.120713.130199

20. Ding, H., G. Chen, A. Majumdar, B. Sadler, and Z. Xu, "Modeling of non-line-of-sight ultraviolet scattering channels for communication," IEEE J. Sel. Areas Commun., Vol. 27, No. 9, 1535-1544, 2009.
doi:10.1109/JSAC.2009.091203