Vol. 55
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-03-02
Mixed Signal-Based GLR Detector for FM Passive Bistatic Radar Target Detection
By
Progress In Electromagnetics Research M, Vol. 55, 37-49, 2017
Abstract
This paper addresses the CFAR target detection in FM-based passive bistatic radars as a composite hypothesis testing problem, using the mixed signal model. The corresponding generalized likelihood ratio test (GLRT) is derived. It has less computational requirements with respect to the conventional GLRT-based detector, previously developed in the literature, due to the decrease in the row dimension of the interference matrix. The proposed detector is computationally efficient for tracking or short-range-radar applications in which a few range cells are surveyed. The theoretical and simulation-based analysis of detection performances and a thorough discussion on the computational complexity compared with that of the existing detectors are also provided.
Citation
Mohammad Zamani, and Abbas Sheikhi, "Mixed Signal-Based GLR Detector for FM Passive Bistatic Radar Target Detection," Progress In Electromagnetics Research M, Vol. 55, 37-49, 2017.
doi:10.2528/PIERM16122501
References

1. Cherniakov, M., Bistatic Radar: Emerging Technology, Wiley, 2008.
doi:10.1002/9780470985755

2. Colone, F., D. W. Ohagan, P. Lombardo, and C. J. Baker, "A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 45, No. 2, 698-722, 2009.
doi:10.1109/TAES.2009.5089551        Google Scholar

3. De Maio, A., G. Foglia, N. Pasquino, and M. Vadursi, "Measurement and comparative analysis of clutter for GSM and UMTS passive radars," IET Radar, Sonar & Navigation, Vol. 4, No. 3, 412-423, 2010.
doi:10.1049/iet-rsn.2009.0217        Google Scholar

4. Colone, F., K. Woodbridge, H. Guo, D. Mason, and C. J. Baker, "Ambiguity function analysis of wireless LAN transmissions for passive radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 1, 240-264, 2011.
doi:10.1109/TAES.2011.5705673        Google Scholar

5. Colone, F., D. Langellotti, and P. Lombardo, "DVB-T signal ambiguity function control for passive radars," IEEE Transactions on Aerospace and Electronic Systems, Vol. 50, No. 1, 329-347, 2014.
doi:10.1109/TAES.2013.120616        Google Scholar

6. Malanowski, M., K. Kulpa, J. Kulpa, P. Samczynski, and J. Misiurewicz, "Analysis of detection range of FM-based passive radar," IET Radar, Sonar & Navigation, Vol. 8, No. 2, 153-159, 2014.
doi:10.1049/iet-rsn.2013.0185        Google Scholar

7. Colone, F., R. Cardinali, and P. Lombardo, "Cancellation of clutter and multipath in passive radar using a sequential approach," IEEE Conference on Radar, 393-399, 2006.        Google Scholar

8. Colone, F., R. Cardinali, P. Lombardo, and C. Ferretti, "Comparison of clutter and multipath cancellation techniques for passive radar," IEEE Conference on Radar, 469-474, 2007.        Google Scholar

9. Zaimbashi, A., M. Derakhtian, and A. Sheikhi, "GLRT-based CFAR detection in passive bistatic radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 49, No. 1, 134-159, 2013.
doi:10.1109/TAES.2013.6404095        Google Scholar

10. Zaimbashi, A., M. Derakhtian, and A. Sheikhi, "Invariant target detection in multiband FM-based passive bistatic radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 50, No. 1, 720-736, 2014.
doi:10.1109/TAES.2013.120248        Google Scholar

11. Bolvardi, H., M. Derakhtian, and A. Sheikhi, "Reduced complexity generalized likelihood ratio detector for digital broadcasting terrestrial-based passive radar," IET Radar, Sonar & Navigation, Vol. 9, No. 8, 1021-1029, 2015.
doi:10.1049/iet-rsn.2014.0557        Google Scholar

12. Zaimbashi, A., A. Sheikhi, and M. Derakhtian, "Evaluation of detection performance of passive bistatic radar detectors based on commercial FM radio signals," Journal of Radar, Vol. 1, No. 2, 23-34, 2014.        Google Scholar

13. Stein, S., "Algorithms for ambiguity function processing," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 29, No. 3, 588-899, 1981.
doi:10.1109/TASSP.1981.1163621        Google Scholar

14. Neyt, X., J. Raout, M. Kubica, V. Kubica, S. Roques, M. Acheroy, et al. "Feasibility of STAP for passive GSM-based radar," IEEE Conference on Radar, 546-551, 2006.        Google Scholar

15. Raout, J., A. Santori, and E. Moreau, "Passive bistatic noise radar using DVB-T signals," IET Radar, Sonar & Navigation, Vol. 4, No. 3, 403-411, 2010.
doi:10.1049/iet-rsn.2009.0053        Google Scholar

16. Raout, J., A. Santori, and E. Moreau, "Space-time clutter rejection and target passive detection using the APES method," IET Signal Processing, Vol. 4, No. 3, 298-304, 2010.
doi:10.1049/iet-spr.2009.0067        Google Scholar

17. Colone, F., R. Cardinali, P. Lombardo, O. Crognale, A. Cosmi, A. Lauri, et al. "Space-time constant modulus algorithm for multipath removal on the reference signal exploited by passive bistatic radar," IET Radar, Sonar & Navigation, Vol. 3, No. 3, 253-264, 2009.
doi:10.1049/iet-rsn:20080102        Google Scholar

18. Kay, S. M., Fundamentals of Statistical Signal Processing, 1, Prentice Hall, 1993.