1. Garver, R. V., Microwave Diode Control Devices, Artech House, Norwood, 1976.
2. White, J. F., Microwave Semiconductor Engineering, Van Nostrand, New York, 1982.
doi:10.1007/978-94-011-7065-9
3. Mantooth, H. A. and J. L. Duliere, "A unied diode model for circuit simulation," IEEE Transactions on Power Electronics, Vol. 12, 816-823, 1997.
doi:10.1109/63.622999 Google Scholar
4. Kung, F. and H. T. Chuah, "Modeling of bipolar junction transistor in FDTD simulation of printed circuit board," Progress In Electromagnetics Research, Vol. 36, 179-192, 2002.
doi:10.2528/PIER02013001 Google Scholar
5. Xiao, S.-Q., B.-Z. Wang, P. Du, and Z. Shao, "An enhanced FDTD model for complex lumped circuits," Progress In Electromagnetics Research, Vol. 76, 485-495, 2007.
doi:10.2528/PIER07073003 Google Scholar
6. Buiatti, G. M., F. Cappelluti, and G. Ghione, "Physics-based PIN diode SPICE model for power- circuit simulation," IEEE Transactions on Industry Applications, Vol. 43, 911-919, 2007.
doi:10.1109/TIA.2007.900492 Google Scholar
7. Lee, F. K. W. and H.-T. Chuah, "A nite-difference time-domain (FDTD) software for simulation of printed circuit board (PCB) assembly," Progress In Electromagnetics Research, Vol. 50, 299-335, 2005.
doi:10.2528/PIER04071401 Google Scholar
8. Bellone, S., F. G. Della, L. F. Albanese, and F. Pezzimenti, "An analytical model of the forward I-V characteristics of 4H-SiC p-i-n diodes valid for a wide range of temperature and current," IEEE Transactions on Power Electronics, Vol. 26, 2835-2843, 2011.
doi:10.1109/TPEL.2011.2129533 Google Scholar
9. Ciampolini, P., L. Roselli, G. Stopponi, and R. Sorrentiono, "Global modeling strategies fo the analysis of high-frequency integrated circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 950-955, 1999.
doi:10.1109/22.769331 Google Scholar
10. Grondin, R. O., S. M. El-Ghazaly, and S. Goodnick, "A review of global modeling of charge transport in semiconductors and full-wave electromagnetics," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 817-829, 1999.
doi:10.1109/22.769315 Google Scholar
11. Tsai, H. P., R. Coccioli, and T. Itoh, "Time domain global modelling of EM propagation in semiconductor using irregular grids," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 15, 355-370, 2002.
doi:10.1002/jnm.458 Google Scholar
12. Chen, X., J. Q. Chen, K. Huang, and X. B. Xu, "A circuit simulation method based on physical approach for the analysis of Mot bal99lt1 pin diode circuits," IEEE Transactions on Electron Devices, Vol. 58, 2862-2870, 2011.
doi:10.1109/TED.2011.2159009 Google Scholar
13. Chen, J. Q., X. Chen, C. J. Liu, K. Huang, and X. B. Xu, "Analysis of temperature effect on pin diode circuits by a multiphysics and circuit cosimulation algorithm," IEEE Transactions on Electron Devices, Vol. 59, 3069-3077, 2012.
doi:10.1109/TED.2012.2211602 Google Scholar
14. Sze, S. M., Physics of Semiconductor Devices, Wiley, New York, 1981.
15. Sui, W. Q., Time-domain Computer Analysis of Nonlinear Hybrid Systems, CRC Press, Florida, 2002.
16. Lebedev, I. V. and N. V. Drozdovskii, "Bistability and electronic hysteresis of the amplitude characteristics of pin-diode structures," Journal of Communications Technology & Electronics, Vol. 39, 66-73, 1994. Google Scholar
17. Lebedev, I. V., A. S. Shnitnikov, I. V. Dyakov, et al. "Impedance properties of high-frequency pin diodes," Solid-State Electronics, Vol. 42, 121-128, 1998.
doi:10.1016/S0038-1101(97)00258-X Google Scholar
18. Drizdovski, N. and T. Takano, "Computer modeling of bistability effect in PIN diode limiter characteristic," IEEE Microwave and Guided Wave Letters, Vol. 10, 148-150, 2000.
doi:10.1109/75.846928 Google Scholar