Vol. 66
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-03-03
An Asymmetrical Bulk CMOS Switch for 2.4 GHz Application
By
Progress In Electromagnetics Research Letters, Vol. 66, 99-104, 2017
Abstract
A novel asymmetrical single-pole double-throw (SPDT) switch for 2.4 GHz application with high power handle ability is developed. The novel asymmetrical topology is discussed. To increase the power capacity, ac-floating and dc-bias techniques are used. Using these techniques, a switch achieves a measured P1 dB of 20.5 dBm, an insertion loss (IL) of 1.16 dB and isolation loss of 20.8 dB in TX mode; an insertion loss of 1.57 dB and an isolation of 21.6 dB in RX mode. The circuit is fabricated using 3.3-V 0.35-μm DNW NMOS transistors in 0.18-μm bulk CMOS process.
Citation
Lang Chen, and Ye-Bing Gan, "An Asymmetrical Bulk CMOS Switch for 2.4 GHz Application," Progress In Electromagnetics Research Letters, Vol. 66, 99-104, 2017.
doi:10.2528/PIERL17010905
References

1. Yu, B., et al., "A DC-50GHz SPDT switch with maximum insertion loss of 1.9 dB in a commercial 0.13-μm SOI technology," International Soc. Design Conference, 197-198, 2015.

2. Huang, F.-J. and K. K. O, "A 0.5-μm CMOS T/R switch for 900-MHz wireless applications," IEEE Journal of Solid-State Circuits, Vol. 36, No. 3, 486-492, 2001.
doi:10.1109/4.910487

3. Ahn, M., C.-H. Lee, B.-S. Kim, and J. Laskar, "A high-power CMOS switch using a novel adaptive voltage swing distribution method in multistack FETs," IEEE Transactions on Microwave Theory & Techniques, Vol. 56, No. 4, 849-858, 2008.
doi:10.1109/TMTT.2008.919047

4. Sun, P. and P. Liu, "Analysis of parasitic effects in triple-well CMOS SPDT switch," Electronics Letters, Vol. 49, No. 11, 706-708, 2013.
doi:10.1049/el.2013.0945

5. Huang, F.-J. and K. K. O, "Single-pole double-throw CMOS switches for 900-MHz and 2.4-GHz applications on p silicon substrates," IEEE Journal of Solid-State Circuits, Vol. 39, No. 1, 35-41, 2004.
doi:10.1109/JSSC.2003.820857

6. Li, Z. and K. K. O, "15-GHz fully integrated nMOS switches in a 0.13-μm CMOS process," IEEE Journal of Solid-State Circuits, Vol. 40, No. 1, 2323-2328, 2005.

7. Talwalkar, N. A., C. P. Yue, H. Gan, and S. S. Wong, "Integrated CMOS transmit-receive switch using LC-tuned substrate bias for 2.4-GHz and 5.2-GHz applications," IEEE Journal of Solid-State Circuits, Vol. 39, No. 6, 863-870, 2004.
doi:10.1109/JSSC.2004.827809

8. Ohnakado, T., S. Yamakawa, T. Murakami, A. Furukawa, E. Taniguchi, H. Ueda, N. Suematsu, and T. Oomori, "21.5-dBm power-handling 5-GHz transmit/receive CMOS switch realized by voltage division effect of stacked transistor configuration with depletion-layer-extended transistors (DETs)," IEEE Journal of Solid-State Circuits, Vol. 39, No. 4, 577-584, 2004.
doi:10.1109/JSSC.2004.825231

9. Park, P., H. S. Dong, and C. P. Yue, "High-linearity CMOS T/R switch design above 20 GHz using asymmetrical topology and AC-floating bias," IEEE Transactions on Microwave Theory & Techniques, Vol. 54, No. 4, 948-956, 2009.
doi:10.1109/TMTT.2009.2014450

10. Xu, X., et al. "Highly linear high isolation SPDT switch IC with back-gate effect and floating body technique in 180-nm CMOS," 2015 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), IEEE, 2015.