1. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas and Propagation Magazine, Vol. 35, No. 3, 7-12, 1993.
doi:10.1109/74.250128 Google Scholar
2. Song, J. M. and W. C. Chew, "Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic," Microwave and Optical Technology Letters, Vol. 10, 14-19, 1995.
doi:10.1002/mop.4650100107 Google Scholar
3. Song, J., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Tansactions on Antennas and Propagation, Vol. 45, 1488-1493, 1997.
doi:10.1109/8.633855 Google Scholar
4. Prakash, V. V. S. and R. Mittra, "Characteristic basis function method: A new technique for efficient solution of method of moments matrix equations," Microwave and Optical Technology Letters, Vol. 36, 95-100, 2003.
doi:10.1002/mop.10685 Google Scholar
5. Sun, Y. F., C. H. Chan, and R. Mittra, "Characteristic basis function method for solving large problems arising in dense medium scattering," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 1068-1071, 2003. Google Scholar
6. Tanaka, T., Y. Nishioka, and Y. Inasawa, "Verification of the PMCHWT-CBFM for scattering analysis of a microstrip array antenna," The 8th European Conference on Antennas and Propagation, 3232-3236, 2014.
doi:10.1109/EuCAP.2014.6902517 Google Scholar
7. Tiberi, G., M. Degiorgi, and A. Monorchio, "A class of physical optics-SVD derived basis functions for solving electromagnetic scattering problems," IEEE Antennas and Propagation Society International Symposium, 143-146, 2005. Google Scholar
8. Degiorgi, M., G. Tiberi, and A. Monorchio, "An SVD-based method for analyzing electromagnetic scattering from plates and faceted bodies using physical optics bases," IEEE Antennas and Propagation Society International Symposium, 147-150, 2005. Google Scholar
9. Maaskant, R., R. Mittra, and A. Tijhuis, "Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm," IEEE Transactions on Antennas and Propagation, Vol. 56, 3440-3451, 2009. Google Scholar
10. De Gregorio, M., G. Tiberi, and A. Monorchio, "Solution of wide band scattering problems using the characteristic basis function method," IET Microwaves Antennas and Propagation, Vol. 6, 60-66, 2012.
doi:10.1049/iet-map.2011.0309 Google Scholar
11. Lucente, E., A. Monorchio, and R. Mittra, "An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 56, 999-1007, 2008.
doi:10.1109/TAP.2008.919166 Google Scholar
12. Wang, Z. G., Y. F. Sun, and G. H.Wang, "Fast analyses of electromagnetic scatteringcharacteristics from conducting targets using improved and the adaptive cross approximation algorithm," Acta Physica Sinica, Vol. 62, 204102, 2013. Google Scholar
13. Hay, S. G., J. D. O’Sullivan, and A. Mittra, "Connected patch array analysis using the characteristic basis function method," IEEE Transactions on Antennas and Propagation, Vol. 59, 1828-1837, 2011.
doi:10.1109/TAP.2011.2123867 Google Scholar
14. Konno, K. and Q. Chen, "The numerical analysis of an antenna near a dielectric object using the higher-order characteristic basis function method combined with a volume integral equation," IEICE Transactions on Communications, Vol. E97B, 2066-2073, 2014.
doi:10.1587/transcom.E97.B.2066 Google Scholar
15. Tanaka, T., Y. Inasawa, and Y. Nishioka, "Improved primary characteristic basis function method for monostatic radar cross section analysis of specific coordinate plane," IEICE Transactions on Electronics, Vol. E99C, 28-35, 2016.
doi:10.1587/transele.E99.C.28 Google Scholar