1. Mankins, J. C., The Case for Space Solar Power, Virginia Edition Publishing, 2014.
2. Myers, D. R., Solar Radiation: Practical Modeling for Renewable Energy Applications, CRC Press, 2013.
3. Luque, A., "Will we exceed 50% effciency in photovoltaics?," Journal of Applied Physics, Vol. 110, No. 3, 2011. [Online], Available: http://scitation.aip.org/content/aip/journal/jap/110/3/10.1063/1.3600702.
doi:10.1063/1.3600702 Google Scholar
4. Kotter, D. K., S. D. Novack, W. Slafer, and P. Pinhero, "Theory and manufacturing processes of solar nanoantenna electromagnetic collectors," Journal of Solar Energy Engineering, Vol. 132, No. 1, 011014, 2010.
doi:10.1115/1.4000577 Google Scholar
5. Shockley, W. and H. J. Queisser, "Detailed balance limit of efficiency of pn junction solar cells," Journal of Applied Physics, Vol. 32, No. 3, 1961.
doi:10.1063/1.1736034 Google Scholar
6. King, R. R., D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, "40 gainpgainasge multijunction solar cells," Applied Physics Letters,, Vol. 90, No. 18, 2007. [Online], Available: http://scitation.aip.org/content/aip/journal/apl/90/18/10.1063/1.2734507.
doi:10.1063/1.2734507 Google Scholar
7. Bailey, R. L., "A proposed new concept for a solar-energy converter," Journal of Engineering for Gas Turbines and Power, Vol. 94, No. 2, 73-77, 1972.
doi:10.1115/1.3445660 Google Scholar
8. Grover, S. and G. Moddel, "Applicability of Metal/Insulator/Metal (MIM) diodes to solar rectennas," IEEE Journal of Photovoltaics, Vol. 1, No. 1, 78-83, July 2011.
doi:10.1109/JPHOTOV.2011.2160489 Google Scholar
9. Dregely, D., R. Taubert, J. Dorfm¨uller, R. Vogelgesang, K. Kern, and H. Giessen, "3d optical yagi-uda nanoantenna array," Nature Communications, Vol. 2, 267, 2011.
doi:10.1038/ncomms1268 Google Scholar
10. Novotny, L. and N. Van Hulst, "Antennas for light," Nature Photonics, Vol. 5, No. 2, 83-90, 2011.
doi:10.1038/nphoton.2010.237 Google Scholar
11. Kosako, T., Y. Kadoya, and H. F. Hofmann, "Directional control of light by a nano-optical yagi-uda antenna," Nature Photonics, Vol. 4, No. 5, 312-315, 2010.
doi:10.1038/nphoton.2010.34 Google Scholar
12. Viti, L., J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, "Black phosphorus terahertz photodetectors," Advanced Materials, Vol. 27, No. 37, 5567-5572, 2015.
doi:10.1002/adma.201502052 Google Scholar
13. Viti, L., D. Coquillat, A. Politano, K. A. Kokh, Z. S. Aliev, M. B. Babanly, O. E. Tereshchenko, W. Knap, E. V. Chulkov, and M. S. Vitiello, "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Letters, Vol. 16, No. 1, 80-87, 2015.
doi:10.1021/acs.nanolett.5b02901 Google Scholar
14. Viti, L., J. Hu, D. Coquillat, A. Politano, C. Consejo, W. Knap, and M. S. Vitiello, "Heterostructured hbn-bp-hbn nanodetectors at terahertz frequencies," Advanced Materials, Vol. 28, No. 34, 7390-7396, 2016.
doi:10.1002/adma.201601736 Google Scholar
15. Viti, L., J. Hu, D. Coquillat, A. Politano, W. Knap, and M. S. Vitiello, "Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response," Scientific Reports, Vol. 6, 2016. Google Scholar
16. Mitrofanov, O., L. Viti, E. Dardanis, M. C. Giordano, D. Ercolani, A. Politano, L. Sorba, and M. S. Vitiello, "Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging," Scientific Reports, Vol. 7, 2017. Google Scholar
17. Sabaawi, A., C. Tsimenidis, and B. Sharif, "Analysis and modeling of infrared solar rectennas,", Vol. 19, No. 3, 9 000 208-9 000 208, May 2013. Google Scholar
18. Gadalla, M., M. Abdel-Rahman, and A. Shamim, "Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification," Scientific Reports, Vol. 4, 2014. Google Scholar
19. Feuillet-Palma, C., Y. Todorov, A. Vasanelli, and C. Sirtori, "Strong near field enhancement in THz nano-antenna arrays," Scientific Reports, Vol. 3, 2013. Google Scholar
20. Ramahi, O., T. Almoneef, M. Alshareef, and M. Boybay, "Metamaterial particles for electromagnetic energy harvesting," Applied Physics Letters, Vol. 101, No. 17, 173 903-173 903, 2012.
doi:10.1063/1.4764054 Google Scholar
21. Almoneef, T. S. and O. M. Ramahi, "Metamaterial electromagnetic energy harvester with near unity efficiency," Applied Physics Letters, Vol. 106, No. 15, 153902, 2015.
doi:10.1063/1.4916232 Google Scholar
22. Avitzour, Y., Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negativeindex plasmonic metamaterial," Phys. Rev. B, Vol. 79, 045131, Jan. 2009. [Online], Available: http://link.aps.org/doi/10.1103/PhysRevB.79.045131.
doi:10.1103/PhysRevB.79.045131 Google Scholar
23. Wang, B.-X., L.-L. Wang, G.-Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, "Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber," IEEE Photonics Technology Letters, Vol. 26, No. 2, 111-114, Jan. 2014.
doi:10.1109/LPT.2013.2289299 Google Scholar
24. Xiong, X., Z.-H. Xue, C. Meng, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, "Polarizationdependent perfect absorbers/re ectors based on a three-dimensional metamaterial," Phys. Rev. B, Vol. 88, 115105, Sep. 2013. [Online], Available: http://link.aps.org/doi/10.1103/PhysRevB.88.115105.
doi:10.1103/PhysRevB.88.115105 Google Scholar
25. Yahiaoui, R., S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, "Multispectral terahertz sensing with highly exible ultrathin metamaterial absorber," Journal of Applied Physics, Vol. 118, No. 8, 083103, 2015. [Online], Available: http://dx.doi.org/10.1063/1.4929449.
doi:10.1063/1.4929449 Google Scholar
26. Yahiaoui, R., J. P. Guillet, F. de Miollis, and P. Mounaix, "Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications," Opt. Lett., Vol. 38, No. 23, 4988-4990, Dec. 2013. [Online], Available: http://ol.osa.org/abstract.cfm?FURI=ol-38-23-4988.
doi:10.1364/OL.38.004988 Google Scholar
27. Yahiaoui, R., K. Hanai, K. Takano, T. Nishida, F. Miyamaru, M. Nakajima, and M. Hangyo, "Trapping waves with terahertz metamaterial absorber based on isotropic Mie resonators," Opt. Lett., Vol. 40, No. 13, 3197-3200, Jul. 2015. [Online], Available: http://ol.osa.org/abstract.cfm?URI=ol-40-13-3197.
doi:10.1364/OL.40.003197 Google Scholar
28. Liu, X., T. Starr, A. F. Starr, and W. J. Padilla, "Infrared spatial and frequency selective metamaterial with near-unity absorbance," Phys. Rev. Lett., Vol. 104, 207403, May 2010. [Online], Available: http://link.aps.org/doi/10.1103/PhysRevLett.104.207403.
doi:10.1103/PhysRevLett.104.207403 Google Scholar
29. AlShareef, M. and O. M. Ramahi, "Electrically small resonators for energy harvesting in the infrared regime," Journal of Applied Physics, Vol. 144, 223 101-223 105, 2013.
doi:10.1063/1.4846076 Google Scholar
30. Shrekenhamer, D., W.-C. Chen, and W. J. Padilla, "Liquid crystal tunable metamaterial absorber," Phys. Rev. Lett., Vol. 110, 177403, Apr. 2013.
doi:10.1103/PhysRevLett.110.177403 Google Scholar
31. Hao, J., Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, "Manipulating electromagnetic wave polarizations by anisotropic metamaterials," Phys. Rev. Lett., Vol. 99, 063908, Aug. 2007. [Online], Available: http://link.aps.org/doi/10.1103/PhysRevLett.99.063908.
doi:10.1103/PhysRevLett.99.063908 Google Scholar
32., CST STUDIO SUITE, “CST Computer Simulation Technology AG,” www.cst.com.
33. Ordal, M., L. Long, R. Bell, S. Bell, R. Bell, R. Alexander, and C. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Applied Optics, Vol. 22, No. 7, 1099-1119, 1983.
doi:10.1364/AO.22.001099 Google Scholar