Vol. 69
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-06-26
Ultra-Wideband Bandpass Filter with Sharp Tuned Notched Band Rejection Based on CRLH Transmission-Line Unit Cell
By
Progress In Electromagnetics Research Letters, Vol. 69, 9-14, 2017
Abstract
The proposed filter satisfies the Federal Communications Commission ultra-wideband (FCC-UWB) specifications, and also creates and controls sharp rejection notch-bands within the filter's passband in order to provide interference immunity from unwanted radio signals, such as wireless local area networks (WLAN) and worldwide interoperability for microwave access (WIMAX) that cohabit within the UWB spectrum. This filter is based on CRLH concept consisting of an asymmetric transmission line unit cell with a short circuited inductive stub to realize high performance in an operation band from 3.1 to 10.6 GHz with a very compact size of 16.4mm × 5.0 mm. The main advantage of the proposed filter is that four notch frequencies are tuned in the UWB frequency band. The notch frequencies of the filter can be changed by increasing the length of the coupling stub which is controlled by using switching matrix equipment (Mini Circuit) instead of PIN diodes. To validate the design theory, a microstrip UWB BPF with four notch bands centered at frequencies 6.18, 5.9, 5.7, and 5.5GHz is designed and fabricated.
Citation
Eman Gamal Ouf, Ashraf Shouki Seliem Mohra, Esmat A. F. Abdallah, and Hadia El-Hennawy, "Ultra-Wideband Bandpass Filter with Sharp Tuned Notched Band Rejection Based on CRLH Transmission-Line Unit Cell," Progress In Electromagnetics Research Letters, Vol. 69, 9-14, 2017.
doi:10.2528/PIERL17043004
References

1. Federal Communications Commission (FCC), Revision of Part 15 of the Commissions Rules Regarding: ``Ultra-Wideband Transmission Systems," First Report and order, FCC 2-48, April 22, 2002.

2. Hsu, C. L., F. C. Hsu, and J. T. Kuo, "Microstrip bandpass filters for Ultra-Wideband (UWB) wireless communications," IEEE MTT-S International Microwave Symposium Digest, 679-682, 2005.
doi:10.1002/mop.21133

3. Hong, J. S. and H. Shaman, "An optimum ultra-wide-band microstrip filter," Microwave and Optical Technology Letters, Vol. 47, 230-233, 2005.
doi:10.1109/LMWC.2013.2287231

4. Li, X. and X. Ji, "Novel compact UWB bandpass filters design with cross-coupling between short-circuited stubs," IEEE Microwave and Wireless Components Letters, Vol. 24, 23-25, 2014.
doi:10.1109/LMWC.2005.859011

5. Zhu, L., S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microwave and Wireless Components Letters, Vol. 15, 796-798, 2005.
doi:10.1109/LMWC.2012.2201930

6. Xu, J., W. Wu, W. Kang, and C. Miao, "Compact UWB bandpass filter with a notched band using radial stub loaded resonator," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 7, 351-353, July 2012.
doi:10.1109/LMWC.2006.890467

7. Shaman, H. and J. S. Hong, "Ultra-wideband (UWB) bandpass filter with embedded band notch structure," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 3, 193-195, March 2007.
doi:10.1109/LMWC.2011.2109942

8. Kim, C. H. and K. Chang, "Ultra wideband (UWB) ring resonator bandpass filter with a notched band," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 4, 206-208, April 2011.
doi:10.1109/TMTT.2015.2405066

9. Garcia, R. G. and A. C. Guyette, "Reconfigurable multi-band microwave filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 4, 1294-1307, April 2015.
doi:10.1109/TMTT.2013.2296530

10. Wang, H., K. W. Tam, S. K. Ho, W. Kang, and W. Wu, "Design of ultra-wideband bandpass filters with fixed and reconfigurable notch bands using terminated cross-shaped resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 2, 252-265, February 2014.
doi:10.1109/TAP.2016.2585183

11. Horestani, A. K., Z. Shaterian, J. Naqui, F. Martin, and C. Fumeaux, "Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antennas," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 9, 3766-3776, September 2016.
doi:10.1109/ICMMT.2016.7761773

12. Liang, J. G., X. Zhang, and L. Sun, "Compact UWB bandpass filter with triple notched bands using quadruple-mode resonator," IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), Vol. 1, 354-356, Beijing, China, June 2016.

13. Zheng, X., W. Liu, X. Zhang, and T. Jiang, "Design of dual band-notch UWB bandpass filter based on T-shaped resonator," Progress In Electromagnetic Research Symposium, 4482-4486, Shanghai, China, August 8-11, 2016.
doi:10.1109/TMTT.2012.2231432

14. Ahmed, K. U. and B. Virdee, "Ultra-wide band bandpass filter based on composite right/left handed transmission-line unit cell," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 2, 782-788, February 2013.
doi:10.1049/el.2012.2885

15. Wei, F., Z. D. Wang, F. Yang, and X. W. Shi, "Compact UWB BPF with triple-notched bands based on stub loaded resonator," IEEE Electronics Letters, Vol. 49, No. 2, 124-126, January 2013.
doi:10.1109/LMWC.2013.2296291

16. Song, Y., G. M. Yang, and G. Wen, "Compact UWB bandpass filter with dual notched bands using defected ground structures," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 4, 230-232, April 2014.
doi:10.1109/LMWC.2013.2262928

17. Zhu, H. and Q. X. Chu, "Ultra-wideband bandpass filter with a notch-band using stub-loaded ring resonator," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 7, 341-343, July 2013.

18. Shan, Q., C. Chen, and W. Wu, "Design of an UWB bandpass filter with a notched band using asymmetric loading stubs," IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), Vol. 2, 5-8, June 2016.