1. Fujimoto, K. and H. Morishita, Modern Small Antennas, 2014, dx.doi.org/10.1017/CBO9780511977602.
2. Palandoken, M. and H. Henke, "Fractal negative-epsilon metamaterial," IEEE International Workshop on Antenna Technology (iWAT), 2010. Google Scholar
3. Stuart, H. R. and A. Pidwerbetsky, "Electrically small antenna elements using negative permittivity resonators," IEEE Transactions on Antennas Propagation, Vol. 54, 1644-1653, 2006.
doi:10.1109/TAP.2006.875498 Google Scholar
4. Ghosh, B., S. Ghosh, and A. B. Kakade, "Investigation of gain enhancement of electrically small antennas using double-negative, single-negative, and double-positive materials," Physical Review E, Vol. 78, 026611, 2008.
doi:10.1103/PhysRevE.78.026611 Google Scholar
5. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Novel stacked μ-negative material-loaded antenna for satellite applications," International Journal of Microwave and Wireless Technologies, Vol. 8, 229-235, 2016, doi:10.1017/S175907871400138X.
doi:10.1017/S175907871400138X Google Scholar
6. Kimouche, H. and S. Oukil, "Electrically small antenna with defected ground structure," 2012 9th European Radar Conference (EuRAD), IEEE, 2012. Google Scholar
7. Geng, J.-P., J. Li, R.-H. Jin, S. Ye, X. Liang, and M. Li, "The development of curved microstrip antenna with defected ground structure," Progress In Electromagnetics Research, Vol. 98, 53-73, 2009.
doi:10.2528/PIER09081905 Google Scholar
8. Thal, H. L., "New radiation Q limits for spherical wire antennas," IEEE Transactions on Antennas Propagation, Vol. 54, No. 10, 2006.
doi:10.1109/TAP.2006.882184 Google Scholar
9. Chu, L. J., "Physical limitations in omnidirectional antennas," J. Appl. Phys., Vol. 19, 1163-1175, 1948.
doi:10.1063/1.1715038 Google Scholar
10. Wheeler, H. A., "Fundamental limitations of small antennas," IRE Proc., Vol. 35, 1479-1484, 1947.
doi:10.1109/JRPROC.1947.226199 Google Scholar
11. Patel, R. H., A. Desai, and T. Upadhyaya, "A discussion on electrically small antenna property," Microwave Opt. Technol. Letter, Vol. 57, 2386-2388, 2015, doi: 10.1002/mop.29335.
doi:10.1002/mop.29335 Google Scholar
12. Yaghjian, A. D. and S. R. Best, "Impedance, bandwidth, and Q of antennas," IEEE Transactions on Antennas Propagation, Vol. 53, 1298-1324, 2005.
doi:10.1109/TAP.2005.844443 Google Scholar
13. Zhang, Y. and H. Y. D. Yang, "Bandwidth-enhanced electrically small printed folded dipoles," IEEE Antennas Wireless Propagation Letter, Vol. 9, 236-239, 2010.
doi:10.1109/LAWP.2010.2046875 Google Scholar
14. Li, L.-W., C.-P. Lim, and M.-S. Leong, "Near fields of electrically small thin square and rectangular loop antennas," Progress In Electromagnetics Research, Vol. 31, 181-193, 2001.
doi:10.2528/PIER00062202 Google Scholar
15. Dang, L., Z. Y. Lei, Y. J. Xie, G. L. Ning, and J. Fan, "A compact microstrip slot triple-band antenna for WLAN/WiMAX applications," IEEE Antennas Wireless Propagation Letter, Vol. 9, 1178-1181, 2010.
doi:10.1109/LAWP.2010.2098433 Google Scholar
16. Peng, C.-M., I.-F. Chen, and J.-W. Yeh, "Printed broadband asymmetric dual-loop antenna for WLAN/WiMAX applications," IEEE Antennas Wireless Propagation Letter, Vol. 12, 898-901, 2013.
doi:10.1109/LAWP.2013.2273231 Google Scholar
17. Balanis, C. A., Antenna Theory Analysis and Design, 3rd Ed., Wiley, 2005.
18. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Transactions on Antennas Propagation, Vol. 44, 672-676, 1996.
doi:10.1109/8.496253 Google Scholar
19. Bancroft, R. and H. A. Wheeler, "Fundamental dimension limits of antennas ensuring proper antenna dimensions in mobile device designs," Centurion Wireless Technologies, 2014. Google Scholar