Vol. 63
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-11-24
Circular-Ring Antenna Arrays Being at the Same Time Sparse, Isophoric, and Phase-Only Reconfigurable: Optimal Synthesis via Continuous Aperture Sources
By
Progress In Electromagnetics Research M, Vol. 63, 1-11, 2018
Abstract
An innovative and general approach is proposed to the optimal, mask-constrained power synthesis of circular continuous aperture sources able to dynamically reconfigure their radiation behavior by just modifying their phase distribution. The design procedure relies on an effective a-priori exploration of the search space which guarantees the achievement of the globally-optimal solution. The synthesis is cast as a convex programming problem and can handle an arbitrary number of pencil and shaped beams. The achieved solutions are then exploited as reference and benchmark in order to design phase-only reconfigurable isophoric circular-ring sparse arrays. Numerical results concerning new-generation telecommunication systems are provided in support of the given theory.
Citation
Andrea Francesco Morabito Pasquale Giuseppe Nicolaci , "Circular-Ring Antenna Arrays Being at the Same Time Sparse, Isophoric, and Phase-Only Reconfigurable: Optimal Synthesis via Continuous Aperture Sources," Progress In Electromagnetics Research M, Vol. 63, 1-11, 2018.
doi:10.2528/PIERM17091902
http://www.jpier.org/PIERM/pier.php?paper=17091902
References

1. Bucci, O. M., G. Mazzarella, and G. Panariello, "Reconfigurable arrays by phase-only control," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 7, 919-925, 1991.
doi:10.1109/8.86910

2. Buttazzoni, G. and R. Vescovo, "Power synthesis for reconfigurable arrays by phase-only control with simultaneous dynamic range ratio and near-field reduction," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1161-1165, 2012.
doi:10.1109/TAP.2011.2173103

3. Morabito, A. F., T. Isernia, and L. Di Donato, "Optimal synthesis of phase-only reconfigurable linear sparse arrays having uniform-amplitude excitations," Progress In Electromagnetics Research, Vol. 124, 405-423, 2012.
doi:10.2528/PIER11112210

4. Vescovo, R., "Reconfigurability and beam scanning with phase-only control for antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1555-1565, 2008.
doi:10.1109/TAP.2008.923297

5. Trastoy, A., F. Ares, and E. Moreno, "Phase-only control of antenna sum and shaped patterns through null perturbation," IEEE Antennas and Propagation Magazine, Vol. 43, No. 6, 45-54, 2001.
doi:10.1109/74.979495

6. Isernia, T., A. Massa, A. F. Morabito, and P. Rocca, "On the optimal synthesis of phase-only reconfigurable antenna arrays," Proceedings of The 5th European Conference on Antennas and Propagation (EuCAP 2011), 2074-2077, Rome, Italy, article No. 5781977, Apr. 10–15, 2011.

7. Mahanti, G. K., S. Das, and A. Chakraborty, "Design of phase-differentiated reconfigurable array antennas with minimum dynamic range ratio," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 262-264, 2006.
doi:10.1109/LAWP.2006.875899

8. Gies, D. and Y. Rahmat-Samii, "Particle swarm optimization for reconfigurable phase-differentiated array design," Microwave and Optical Technology Letters, Vol. 38, No. 3, 168-175, 2003.
doi:10.1002/mop.11005

9. Morabito, A. F., A. Massa, P. Rocca, and T. Isernia, "An effective approach to the synthesis of phase-only reconfigurable linear arrays," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3622-3631, 2012.
doi:10.1109/TAP.2012.2201099

10. Bucci, O. M., S. Perna, and D. Pinchera, "Synthesis of isophoric sparse arrays allowing zoomable beams and arbitrary coverage in satellite communications," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1445-1447, 2015.
doi:10.1109/TAP.2015.2399934

11. Dıaz, X., J. A. Rodriguez, F. Ares, and E. Moreno, "Design of phase-differentiated multiple-pattern antenna arrays," Microwave and Optical Technology Letters, Vol. 26, No. 1, 52-53, 2000.
doi:10.1002/(SICI)1098-2760(20000705)26:1<52::AID-MOP16>3.0.CO;2-0

12. Rocca, P. and A. F. Morabito, "Optimal synthesis of reconfigurable planar arrays with simplified architectures for monopulse radar applications," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 3, 1048-1058, 2015.
doi:10.1109/TAP.2014.2386359

13. Morabito, A. F. and P. Rocca, "Optimal synthesis of sum and difference patterns with arbitrary sidelobes subject to common excitations constraints," IEEE Antennas Wireless and Propagation Letters, Vol. 9, 623-626, 2010.
doi:10.1109/LAWP.2010.2053832

14., "ESA/ESTEC Tender AO/1-6338/09/NL/JD," Active Multibeam Sparse Array Demonstrator, 2009.

15. Bucci, O. M., T. Isernia, A. F. Morabito, S. Perna, and D. Pinchera, "Density and element-size tapering for the design of arrays with a reduced number of control points and high efficiency," Proc. Fourth European Conference on Antennas and Propagation (EuCAP 2010), Barcelona, Spain, Article No. 55053774, Apr. 12–16, 2010.

16. Bucci, O. M., T. Isernia, and A. F. Morabito, "An effective deterministic procedure for the synthesis of shaped beams by means of uniform-amplitude linear sparse arrays," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 169-175, 2013.
doi:10.1109/TAP.2012.2219844

17. Morabito, A. F. and P. G. Nicolaci, "Optimal synthesis of shaped beams through concentric ring isophoric sparse arrays," IEEE Antennas Wireless and Propagation Letters, Vol. 16, 979-982, 2016.

18. Bucci, O. M., T. Isernia, and A. F. Morabito, "Optimal synthesis of directivity constrained pencil beams by means of circularly symmetric aperture fields," IEEE Antennas Wireless and Propagation Letters, Vol. 8, 1386-1389, 2009.
doi:10.1109/LAWP.2009.2039189

19. Bucci, O. M., T. Isernia, and A. F. Morabito, "Optimal synthesis of circularly symmetric shaped beams," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 1954-1964, 2014.
doi:10.1109/TAP.2014.2302842

20. Isernia, T., O. M. Bucci, and N. Fiorentino, "Shaped beam antenna synthesis problem: feasibility criteria and new strategies," Journal of Electromagnetic Waves and Applications, Vol. 12, 103-137, 1998.
doi:10.1163/156939398X00098

21. Rocca, P., G. Oliveri, R. J. Mailloux, and A. Massa, "Unconventional phased array architectures and design methodologies --- A review," Proceedings of the IEEE, Vol. 104, No. 3, 544-560, 2016.
doi:10.1109/JPROC.2015.2512389

22. Morabito, A. F., A. R. Lagan`a, G. Sorbello, and T. Isernia, "Mask-constrained power synthesis of maximally sparse linear arrays through a compressive-sensing-driven strategy," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 10, 1384-1396, 2015.
doi:10.1080/09205071.2015.1046561

23. Morabito, A. F., A. R. Lagana, and T. Isernia, "Isophoric array antennas with a low number of control points: A ‘size tapered’ solution," Progress In Electromagnetics Research Letters, Vol. 36, 121-131, 2013.
doi:10.2528/PIERL12092705

24. Mahanti, G. K., A. Chakraborty, and S. Das, "Phase-only and amplitude-phase only synthesis of dual-beam pattern linear antenna arrays using floating-point genetic algorithms," Progress In Electromagnetics Research, Vol. 68, 247-259, 2007.
doi:10.2528/PIER06072301

25. Liu, Y., P. You, C. Zhu, X. Tan, and Q. H. Liu, "Synthesis of sparse or thinned linear and planar arrays generating reconfigurable multiple real patterns by iterative linear programming," Progress In Electromagnetics Research, Vol. 155, 27-38, 2016.
doi:10.2528/PIER15120401

26. Zhang, S., S.-X. Gong, Y. Guan, P.-F. Zhang, and Q. Gong, "A novel IGA-EDSPSO hybrid algorithm for the synthesis of sparse arrays," Progress In Electromagnetics Research, Vol. 89, 121-134, 2009.
doi:10.2528/PIER08120806

27. Bucci, O. M., T. Isernia, and A. F. Morabito, "A deterministic approach to the synthesis of pencil beams through planar thinned arrays," Progress In Electromagnetics Research, Vol. 101, 217-230, 2010.
doi:10.2528/PIER10010104

28. Morabito, A. F., T. Isernia, M. G. Labate, M. Durso, and O. M. Bucci, "Direct radiating arrays for satellite communications via aperiodic tilings," Progress In Electromagnetics Research, Vol. 93, 107-124, 2009.
doi:10.2528/PIER09040908

29. Morabito, A. F., A. R. Lagana, and L. Di Donato, "Satellite multibeam coverage of earth: Innovative solutions and optimal synthesis of aperture fields," Progress In Electromagnetics Research, Vol. 156, 135-144, 2016.
doi:10.2528/PIER16061505