Vol. 79
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-11-24
A Novel Reconfigurable UWB Filtering-Antenna with Dual Sharp Band Notches Using Double Split Ring Resonators
By
Progress In Electromagnetics Research C, Vol. 79, 185-198, 2017
Abstract
This study presents a novel technique for designing an ultra-wideband (UWB) filtering-antenna with dual sharp band notches. This design composed of a modified monopole antenna integrated with resonant structures. The monopole antenna is modified using microstrip transition between the feedline and the patch. In addition, block with a triangle-shaped slot is loaded on both sides of the ordinary circular patch to produce wide bandwidth with better return loss and higher frequency skirt selectivity. The resonant structures based on two double split ring resonators (DSRR) loaded above the ground plane of the antenna design to produce dual notched bands, and filter out WiMAX (3.3-3.7 GHz) and HiperLAN2 (5.4-5.7 GHz) frequencies. The band notch position is controlled by varying the length of the DSRR. The reconfigurability feature is achieved by using two PIN diode switches employed in the two DSRR. The measured results show that the proposed filtering-antenna provides wide impedance bandwidth from 2.58 to 15.5 GHz with controllable dual sharp band notches for WiMAX and HiperLAN, peak realized gain of 4.96 dB and omnidirectional radiation pattern.
Citation
Ammar Alhegazi, Zahriladha Zakaria, Noor Azwan Shairi, Imran Mohd Ibrahim, and Sharif Ahmed, "A Novel Reconfigurable UWB Filtering-Antenna with Dual Sharp Band Notches Using Double Split Ring Resonators," Progress In Electromagnetics Research C, Vol. 79, 185-198, 2017.
doi:10.2528/PIERC17092302
References

1. Liao, X.-J., H.-C. Yang, N. Han, and Y. Li, "UWB antenna with single or dual band-notches for lower WLAN band and upper WLAN band," Electron. Lett., Vol. 46, No. 24, 1593, 2010.
doi:10.1049/el.2010.1943        Google Scholar

2. Jusoh, M. R. K. M., M. F. Jamlos, M. H. M. M. F. Malek, M. A. Romli, Z. A. Ahmad, and M. S. Zulkifli, "A reconfigurable ultrawideband (UWB) compact tree-design antenna system," Progress In Electromagnetics Research, Vol. 30, 131-145, 2012.
doi:10.2528/PIERC12041011        Google Scholar

3. Osman, M. A. R., M. K. a Rahim, N. a Samsuri, H. a M. Salim, and M. F. Ali, "Embroidered fully textile wearable antenna for medical monitoring applications," Progress In Electromagnetics Research, Vol. 117, 321-337, 2011.
doi:10.2528/PIER11041208        Google Scholar

4. Rahimi, M., R. A. Sadeghzadeh, and F. B. Zarrabi, "Band-notched UWB monopole antenna design with novel feed for taper rectangular radiating patch," Progress In Electromagnetics Research C, Vol. 47, 147-155, 2014.
doi:10.2528/PIERC14010805        Google Scholar

5. Labade, R., S. Deosarkar, and N. Pisharoty, "Compact integrated bluetooth UWB antenna with quadruple bandnotched characteristics," Int. J. Electr. Comput. Eng., Vol. 5, No. 6, 1433-1440, 2015.        Google Scholar

6. Cal, G., P. Bari, and R. David, "A new triple band circularly polarized square slot antenna design with crooked t and f-shape strips for wireless applications," Progress In Electromagnetics Research, Vol. 125, 503-526, 2012.
doi:10.2528/PIER11122206        Google Scholar

7. Liao, Z., F. Zhang, G. Xie, W. Zhai, and L. Chen, "An omni-directional and band-notched ultra wideband antenna on double substrates crossing," Progress In Electromagnetics Research C, Vol. 22, 231-240, 2011.
doi:10.2528/PIERC11050802        Google Scholar

8. Chu, Q. X. and Y. Y. Yang, "A compact ultrawideband antenna with 3.4/5.5GHz dual bandnotched characteristics," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3637-3644, 2008.
doi:10.1109/TAP.2008.2007368        Google Scholar

9. Morabito, A. F., A, R. Lagana, and T. Isernia, "Isophoric array antennas with a low number of control points: A ‘Size Tapered’ solution," Progress In Electromagnetics Research Letter, Vol. 36, 121-131, 2013.
doi:10.2528/PIERL12092705        Google Scholar

10. Rocca, P. and A. F. Morabito, "Optimal synthesis of reconfigurable planar arrays with simplified architectures for monopulse radar applications," IEEE Trans. Antennas Propag., 1-11, 2014.        Google Scholar

11. Sam, W. Y. and Z. Zakaria, "A review on reconfigurable integrated filter and antenna," Progress In Electromagnetics Research B, Vol. 63, 263-273, 2015.
doi:10.2528/PIERB15082501        Google Scholar

12. Haider, N., D. Caratelli, and A. G. Yarovoy, "Recent developments in reconfigurable and multiband antenna technology," Int. J. Antennas Propag., 1-14, 2013.
doi:10.1155/2013/869170        Google Scholar

13. Alhegazi, A., Z. Zakaria, N. A. Shairi, A. Salleh, and S. Ahmed, "Review of recent developments in filtering-antennas," Int. J. Commun. Antenna Propag., Vol. 6, 125-131, 2016.        Google Scholar

14. Yadav, A., D. Sethi, and R. K. Khanna, "Slot loaded UWB antenna: Dual band notched characteristics," AEU — Int. J. Electron. Commun., Vol. 70, No. 3, 331-335, 2016.
doi:10.1016/j.aeue.2015.12.014        Google Scholar

15. Emadian, S. R. and J. Ahmadi-Shokouh, "Very small dual band-notched rectangular slot antenna with enhanced impedance bandwidth," IEEE Trans. Antennas Propag., Vol. 63, No. 10, 4529-4534, 2015.
doi:10.1109/TAP.2015.2456905        Google Scholar

16. Mehranpour, M., J. Nourinia, C. Ghobadi, and M. Ojaroudi, "Dual band-notched square monopole antenna for ultrawideband applications," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 172-175, 2012.
doi:10.1109/LAWP.2012.2186552        Google Scholar

17. Jiang, D., Y. Xu, R. Xu, and W. Lin, "Compact dual-band-notched UWB planar monopole antenna with modified CSRR," Electron. Lett., Vol. 48, No. 20, 1250, 2012.
doi:10.1049/el.2012.2489        Google Scholar

18. Gomes, C. and M. Z. A. Kadir, "Improved dual band-notched UWB slot antenna with controllable notched bandwidths," Progress In Electromagnetics Research, Vol. 113, 333-349, 2011.
doi:10.2528/PIER10111302        Google Scholar

19. Tang, Z., X. Wu, Z. Xi, and S. Hu, "Novel compact dual-band-notched ultra-wideband printed antenna with a parasitic circular ring strip," Int. J. Microw. Wirel. Technol., 1-7, 2015.        Google Scholar

20. Moosazadeh, M., A. M. Abbosh, and Z. Esmati, "Design of compact planar ultrawideband antenna with dual-notched bands using slotted square patch and pi-shaped conductor-backed plane," IET Microwaves, Antennas Propag., Vol. 54, No. 9, 2053-2056, 2012.        Google Scholar

21. Ojaroudi, M., N. Ojaroudi, and N. Ghadimi, "Dual band-notched small monopole antenna with novel W-shaped conductor backed-plane and novel T-shaped slot for UWB applications," IET Microwaves, Antennas Propag., Vol. 12, 181-185, 2013.        Google Scholar

22. Hu, Z., Y. Hu, Y. Luo, and W. Xin, "A novel rectangle tree fractal UWB antenna with dual band notch characteristics," Progress In Electromagnetics Research C, Vol. 68, 21-30, 2016.
doi:10.2528/PIERC16072702        Google Scholar

23. Saxena, A. and R. P. S. Gangwar, "A compact UWB antenna with dual band-notched at WiMAX and WLAN for UWB applications," 2016 Int. Conf. Electr. Electron. Optim. Tech., 4381-4386, 2016.        Google Scholar

24. Abdollahvand, M., G. Dadashzadeh, and D. Mostafa, "Compact dual band-notched printed monopole antenna for UWB application," IEEE Antennas Wirel. Propag. Lett., Vol. 9, 1148-1151, 2010.
doi:10.1109/LAWP.2010.2091250        Google Scholar

25. Lee, D. H., H.-Y. Yang, and Y.-K. Cho, "Ultra-wideband tapered slot antenna with dual bandnotched characteristics," IET Microwaves, Antennas Propag., Vol. 8, No. 1, 29-38, 2014.
doi:10.1049/iet-map.2013.0116        Google Scholar

26. Oraizi, H. and N. Valizade Shahmirzadi, "Frequency- and time-domain analysis of a novel UWB reconfigurable microstrip slot antenna with switchable notched bands," IET Microwaves, Antennas Propag., Vol. 11, No. 8, 1127-1132, 2017.
doi:10.1049/iet-map.2016.0009        Google Scholar

27. Gao, G., B. Hu, L. He, S.Wang, and Y. Chen, "Investigation of a reconfigurable dual notched UWB antenna by conceptual circuit model and time-domain characteristics," Microw. Opt. Technol. Lett., Vol. 59, No. 6, 1326-1332, 2017.
doi:10.1002/mop.30535        Google Scholar

28. Kumar, A., I. B. Sharma, and M.M. Sharma, "Reconfigurable circular disc monopole UWB antenna with switchable two notched stop bands," India Conf. (INDICON), 2016 IEEE Annu., 2-5, 2016.        Google Scholar

29. Abunjaileh, A. I., "Multimode and multiband microstrip antennas,", PhD Thesis, University of Leeds, 2007.        Google Scholar

30. Tiang, J., M. Islam, N. Misran, and J. Mandeep, "Circular microstrip slot antenna for dualfrequency RFID application," Progress In Electromagnetics Research, Vol. 117, 425-434, 2011.        Google Scholar

31. Pozar, D. M., Microwave Engineering, Vol. 1, 144-146, University Massachusetts Amherst, 2011.

32. Srifi, M. N., S. K. Podilchak, M. Essaaidi, and Y. M. M. Antar, "Compact disc monopole antennas for current and future ultrawideband (UWB) applications," IEEE Trans. Antennas Propag., Vol. 59, No. 12, 4470-4480, 2011.
doi:10.1109/TAP.2011.2165503        Google Scholar

33. Alhegazi, A., Z. Zakaria, N. A. Shairi, A. Salleh, and S. Ahmed, "Integrated filtering antenna with high selectivity band rejection for UWB applications," Przeglad Elektrotechniczny, No. 9, 224-228, 2016.        Google Scholar

34. Gheethan, A. A. and D. E. Anagnostou, "Dual band-reject UWB antenna with sharp rejection of narrow and closely-spaced bands," IEEE Trans. Antennas Propag., Vol. 60, No. 4, 2071-2076, 2012.
doi:10.1109/TAP.2012.2186221        Google Scholar

35. Hamid, M. R., P. S. Hall, P. Gardner, and F. Ghanem, "Switched WLAN-wideband tapered slot antenna," Electron. Lett., Vol. 46, No. 1, 23, 2010.
doi:10.1049/el.2010.2268        Google Scholar

36. Rayno, J. T. and S. K. Sharma, "Frequency reconfigurable spirograph planar monopole antenna (SPMA)," Proc. ISAP2012, Nagoya, Japan, 1305-1308, 2012.        Google Scholar

37. Kim, D., "A high performance IBC-Hub transceiver for intrabody communication system," Microw. Opt. Technol. Lett., Vol. 54, No. 12, 2781-2784, 2012.
doi:10.1002/mop.27172        Google Scholar

38. Horn, A. F., P. A. Lafrance, and J. W. Reynolds, "The influence of test method, conductor profile, and substrate anisotropy on the permittivity values required for accurate modeling of high frequency planar circuits," Circuit World, Vol. 38, No. 4, 219-231, 2012.
doi:10.1108/03056121211280431        Google Scholar

39. Nasrabadi, E. and P. Rezaei, "A novel design of reconfigurable monopole antenna with switchable triple band-rejection for UWB applications," Int. J. Microw. Wirel. Technol., 1-7, 2015.        Google Scholar

40. Semiconductors, N. X. P., "BAP64-02," NXP Semiconductor Malaysia Sdn. Bhd., 2015, Available: http://www.nxp.com/documents/data sheet/BAP64-02.pdf. [Accessed: 20-Dec.-2016].        Google Scholar

41. Shairi, N. A., Z. Zakaria, A. M. S. Zobilah, B. H. Ahmad, and P. W. Wong, "Design of SPDT switch with transmission line stub resonator for WiMAX and LTE in 3.5GHz band," ARPN J. Eng. Appl. Sci., Vol. 11, No. 5, 3198-3202, 2016.        Google Scholar

42. Rahman, T. A., "Reconfigurable ultra wideband antenna design and development for wireless communication,", PhD, Universiti Teknologi Malaysia, 2008.        Google Scholar

43. Tang, M.-C., R. W. Ziolkowski, and S. Xiao, "Compact hyper-band printed slot antenna with stable radiation properties," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 2962-2969, 2014.
doi:10.1109/TAP.2014.2314299        Google Scholar

44. Tang, M., S. Member, H. Wang, T. Deng, S. Member, and R. W. Ziolkowski, "Compact planar ultrawideband antennas with continuously tunable, independent band-notched filters," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3292-3301, 2016.
doi:10.1109/TAP.2016.2570254        Google Scholar

45. Biomedica, I. and E. D. Telecomu, "Design of a novel super wide band circularhexagonal fractal antenna," Progress In Electromagnetics Research, Vol. 133, 53-89, 2013.        Google Scholar