Vol. 72
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-01-16
Reconfigurable Microstrip Antennas Conformal to Cylindrical Surface
By
Progress In Electromagnetics Research Letters, Vol. 72, 119-126, 2018
Abstract
Conformability helps microstrip antenna to mount on any geometry platform and can also be used for multiple frequency systems without any complexity. The designing of a frequency reconfigurable antenna conformal to cylindrical surface using the combination of metamaterial (MTM) and substrate integrated waveguide (SIW) is proposed. The single and dual antenna models resonate at various frequencies of C-band by means of changing the cylindrical curvature. The results also show a considerable improvement in bandwidth and gain for dual antennas as compared to the single antenna. The antenna parameters are simulated on HFSS tool, and validation process is done by experimental setup.
Citation
Prasanna Kumar Singh, and Jasmine Saini, "Reconfigurable Microstrip Antennas Conformal to Cylindrical Surface," Progress In Electromagnetics Research Letters, Vol. 72, 119-126, 2018.
doi:10.2528/PIERL17111002
References

1. Wong, K.-L., Design of Nonplanar Microstrip Antennas and Transmission Lines, 16-30, John Wiley & Sons Inc., 1999.
doi:10.1002/0471200662.ch2

2. Josefsson, L. and P. Persson, Conformal Array Antenna Theory and Design, 155-258, John Wiley & Sons Inc., 2006.
doi:10.1002/047178012X.ch6

3. Tam, W. Y., A. K. Y. Lai, and K. M. Luk, "Mutual coupling between cylindrical rectangular microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 8, 897-899, 1995.
doi:10.1109/8.402215        Google Scholar

4. Singh, P. K. and J. Saini, "Effect of varying curvature and inter element spacing on dielectric coated conformal microstrip antenna array," Progress In Electromagnetics Research M, Vol. 58, 11-19, 2017.
doi:10.2528/PIERM17022012        Google Scholar

5. Singh, P. K. and J. Saini, "Performance analysis of superstrate loaded cylindrically conformal microstrip antenna on the varying curvature for WiMAX applications," International Journal of Microwave and Optical Technology, Vol. 11, No. 6, 406-412, 2016.        Google Scholar

6. Cooray, F. R. and J. S. Kot, "Analysis of radiation from a cylindrical-rectangular microstrip patch antenna loaded with a superstrate and an air gap, using the electric surface current model," Progress In Electromagnetics Research, Vol. 67, 135-152, 2007.
doi:10.2528/PIER06080304        Google Scholar

7. Majid, H. A., M. K. Abd Rahim, and T. Masri, "Microstrip antenna’s gain enhancement using left-handed metamaterial structure," Progress In Electromagnetics Research M, Vol. 8, 235-247, 2009.
doi:10.2528/PIERM09071301        Google Scholar

8. Mahmoud, S. F., "A new miniaturized annular ring patch resonator partially loaded by a metamaterial ring with negative permeability and permittivity," IEEE Antennas and Wireless Propagation Letters, Vol. 3, 19-22, Apr., 2004.
doi:10.1109/LAWP.2004.825092        Google Scholar

9. Wang, H., D.-G. Fang, B. Zhang, and W.-Q. Che, "Dielectric loaded substrate integrated waveguide (SIW) H-plane horn antennas," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 3, 640-647, 2010.
doi:10.1109/TAP.2009.2039298        Google Scholar

10. Caytan, O., S. Lemey, S. Agneessens, and H. Rogier, "SIW antennas as hybrid energy harvesting and power management platforms for the internet of things," International Journal of Microwave and Wireless Technologies, 1-9, 2016.        Google Scholar

11. Luo, G. Q., Z. F. Hu, W. J. Li, X. H. Zhang, L. L. Sun, and J. F. Zheng, "Bandwidth-enhanced low-profile cavity-backed slot antenna by using hybrid SIW cavity modes," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 1698-1704, 2012.
doi:10.1109/TAP.2012.2186226        Google Scholar

12. Luo, G. Q., T. Y. Wang, and X. H. Zhang, "Review of low profile substrate integrated waveguide cavity backed antennas," International Journal of Antennas and Propagation, 1-7, 2013.        Google Scholar

13. Jim’enez-Fern’andez, M. J., R. Torres-S’anchez, and P. Otero, "Cavity-backed slot array antenna in substrate-integrated waveguide technology," Microwave and Optical Technology Letters, Vol. 53, No. 9, 2105-2108, 2011.
doi:10.1002/mop.26165        Google Scholar

14. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002        Google Scholar

15. Capolino, F., Handbook of Artificial Materials: Applications of Metamaterials, Vol. 2, 18.1-18.14, Taylor and Francis, CRC Press, October 2009.
doi:10.1201/9781420054248

16. Deslandes, D. and K. Wu, "Single-substrate integration technique of planar circuits and waveguide components," IEEE Transactions on Microwave Theory and Tech., Vol. 51, 593-596, 2003.
doi:10.1109/TMTT.2002.807820        Google Scholar

17. Meagher, C. J. and S. K. Sharma, "A wideband aperture-coupled microstrip patch antenna employing spaced dielectric cover for enhanced gain performance," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 9, 314-318, 1982.        Google Scholar

18. Yang, H. and Y. N. G. Alexopoulos, "Gain enhancement methods for printed circuit antennas through multiple superstrates," IEEE Transactions on Antennas and Propagation, Vol. 35, No. 8, 860-863, 1987.
doi:10.1109/TAP.1987.1144186        Google Scholar

19. Djerafi, T., A. Doghri, and K. Wu, "Substrate integrated waveguide antennas," Handbook of Antenna Technologies, Springer Science + Business Media Singapore, 1-60, 2015.        Google Scholar

20. Cui, T., D. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications, Springer, 2009.

21. Engheta, N. and R. W. Ziolkowski, Metamaterial Physics & Engineering Explorations, Wiley-IEEE Press, June 2006.