1. Volakis, J. L. and G. Kiziltas, "Novel materials for RF devices," 2007 IEEE Antennas and Propagation Society International Symposium, 1701-1704, Honolulu, HI, 2007.
2. Dimiev, A., W. Lu, K. Zeller, B. Crowgey, L. C. Kempel, and J. M. Tour, "Low-loss, high-permittivity composites made from graphene nanoribbons," ACS Appl. Mater. Interfaces, Vol. 3, No. 12, 4657-4661, 2011.
doi:10.1021/am201071h
3. Koulouridis, S., G. Kiziltas, Y. Zhou, D. Hansford, and J. L. Volakis, "Polymer ceramic composites for microwave applications: Fabrication and performance assessment," IEEE Trans. Microwave Theory and Techniques, Vol. 54, No. 12, 4202-4208, 2006.
doi:10.1109/TMTT.2006.885887
4. Verma, A., A. K. Saxena, and D. C. Dube, "Microwave permittivity and permeability of ferrite-polymer thick films," J. Magn. Magn. Mater., Vol. 263, 228-234, 2003.
doi:10.1016/S0304-8853(02)01569-X
5. Vinoy, K. J. and R. M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization, Kluwer Academic, 1996.
doi:10.1007/978-1-4613-0473-9
6. Feng, Y. B., T. Qiu, and C. Y. Shen, "Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite," J. Magn. Magn. Mater., Vol. 318, 8-13, 2007.
doi:10.1016/j.jmmm.2007.04.012
7. Shirakata, Y., N. Hidaka, M. Ishitsuka, A. Teramoto, and T. Ohmi, "High permeability and low loss Ni-Fe composite material for high-frequency applications," IEEE Trans. Magn., Vol. 44, No. 9, 2100-2106, 2008.
doi:10.1109/TMAG.2008.2001073
8. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, Wiley, 2004.
doi:10.1002/0470020466
9. Ball, J. A. R. and B. Horsfield, "Resolving ambiguity in broadband waveguide permittivity measurements on moist materials," IEEE Trans. Instrum. Meas., Vol. 47, No. 2, 390-392, 1998.
doi:10.1109/19.744179
10. Larsson, C., D. Sjöberg, and L. Elmkvist, "Waveguide measurements of the permittivity and permeability at temperatures of up to 1000˚C," IEEE Trans. Instrum. Meas., Vol. 60, No. 8, 2872-2880, 2011.
doi:10.1109/TIM.2011.2122150
11. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932
12. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382
13. Baker-Jarvis, J., M. D. Janezic, J. H. Gosvenor, and R. G. Geyer, Transmission/Reflection and Short-Circuit Line Methods for Measuring Permittivity and Permeability, NIST Tech. Note 1355, 1992.
14. Baker-Jarvis, J., M. D. Janezic, B. F. Riddle, R. T. Johnk, P. Kabos, C. L. Holloway, R. G. Geyer, and J. H. Gosvenor, Measuring the Permittivity and Permeability of Lossy Materials: Solids, Liquids, Metals, Building Materials, and Negative-Index Materials, NIST Tech. Note 1536, 2005.
15. ASTM Standard D5568 "Standard test method for measuring relative complex permittivity and relative magnetic permeability of solid materials at microwave frequencies using waveguide," ASTM International, West Conshohocken, PA, 2008.
16. Sharma, S. and D. Kaur, "Measurement of complex permittivity of polystyrene composite at 11.64 GHz using cavity perturbation technique," Applied Computational Electromagnetic Society Journal, Vol. 31, No. 1, 92-97, 2016.
17. Bridges, W. B., M. B. Klein, and E. Schweig, "Measurement of the dielectric constant and loss tangent of thallium mixed halide crystals KRS-5 and KRS-6 at 95 GHz," IEEE Trans. Microw. Theory Tech., Vol. 30, No. 3, 286-292, 1982.
doi:10.1109/TMTT.1982.1131063
18. Baker-Jarvis, J., B. Riddle, and M. D. Janezic, Dielectric and Magnetic Properties of Printed Wiring Boards and Other Substrate Materials, NIST Tech. Note 1512, Washington, DC, USA, 1999.
19. Barber, J., J. C. Weatherall, B. T. Smith, S. Duffy, S. J. Goettler, and R. A. Krauss, "Millimeter wave measurements of explosives and simulants," Proc. SPIE 7670, Passive Millimeter-Wave Imaging Technology XIII, 76700E, April 27, 2010.
20. Baharudin, E., A. Ismail, A. R. H. Alhawari, E. S. Zainudin, D. L. A. A. Majid, and F. C. Seman, "Investigate of wave absorption performance for oil palmfrond and empty fruit bunch at 5.8 GHz," International Journal of Advanced and Applied Sciences, Vol. 9, 335-348, 2017.
21. Crowgey, B. R., J. Tang, E. J. Rothwell, B. Shanker, and L. C. Kempel, "A waveguide verification standard design procedure for the microwave characterization of magnetic materials," Progress In Electromagnetics Research, Vol. 150, 29-40, 2015.
doi:10.2528/PIER14100504
22. Deb, K., Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & Sons, LTD, 2001.
23. Rothwell, E. J., J. L. Frasch, S. M. Ellison, P. Chahal, and R. O. Ouedraogo, "Analysis of the Nicolson-Ross-Weir method for characterizing the electromagnetic properties of engineered materials," Progress In Electromagnetics Research, Vol. 157, 31-47, 2016.
doi:10.2528/PIER16071706
24. D’Auria, M., W. J. Otter, J. Hazell, B. T. W. Gillatt, C. Long-Collins, N. M. Ridler, and S. Lucyszyn, "3-D printed metal-pipe rectangular waveguides," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 5, No. 9, 1339-1349, 2015.
doi:10.1109/TCPMT.2015.2462130
25. Otter, W. J., N. M. Ridler, H. Yasukochi, K. Soeda, K. Konishi, J. Yumoto, M. Kuwata-Gonokami, and S. Lucyszyn, "3D printed 1.1 THz waveguides," Electron. Lett., Vol. 53, No. 7, 471-473, 2017.
doi:10.1049/el.2016.4662