1. Volakis, J. L. and G. Kiziltas, "Novel materials for RF devices," 2007 IEEE Antennas and Propagation Society International Symposium, 1701-1704, Honolulu, HI, 2007. Google Scholar
2. Dimiev, A., W. Lu, K. Zeller, B. Crowgey, L. C. Kempel, and J. M. Tour, "Low-loss, high-permittivity composites made from graphene nanoribbons," ACS Appl. Mater. Interfaces, Vol. 3, No. 12, 4657-4661, 2011.
doi:10.1021/am201071h Google Scholar
3. Koulouridis, S., G. Kiziltas, Y. Zhou, D. Hansford, and J. L. Volakis, "Polymer ceramic composites for microwave applications: Fabrication and performance assessment," IEEE Trans. Microwave Theory and Techniques, Vol. 54, No. 12, 4202-4208, 2006.
doi:10.1109/TMTT.2006.885887 Google Scholar
4. Verma, A., A. K. Saxena, and D. C. Dube, "Microwave permittivity and permeability of ferrite-polymer thick films," J. Magn. Magn. Mater., Vol. 263, 228-234, 2003.
doi:10.1016/S0304-8853(02)01569-X Google Scholar
5. Vinoy, K. J. and R. M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization, Kluwer Academic, 1996.
doi:10.1007/978-1-4613-0473-9
6. Feng, Y. B., T. Qiu, and C. Y. Shen, "Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite," J. Magn. Magn. Mater., Vol. 318, 8-13, 2007.
doi:10.1016/j.jmmm.2007.04.012 Google Scholar
7. Shirakata, Y., N. Hidaka, M. Ishitsuka, A. Teramoto, and T. Ohmi, "High permeability and low loss Ni-Fe composite material for high-frequency applications," IEEE Trans. Magn., Vol. 44, No. 9, 2100-2106, 2008.
doi:10.1109/TMAG.2008.2001073 Google Scholar
8. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, Wiley, 2004.
doi:10.1002/0470020466
9. Ball, J. A. R. and B. Horsfield, "Resolving ambiguity in broadband waveguide permittivity measurements on moist materials," IEEE Trans. Instrum. Meas., Vol. 47, No. 2, 390-392, 1998.
doi:10.1109/19.744179 Google Scholar
10. Larsson, C., D. Sjöberg, and L. Elmkvist, "Waveguide measurements of the permittivity and permeability at temperatures of up to 1000˚C," IEEE Trans. Instrum. Meas., Vol. 60, No. 8, 2872-2880, 2011.
doi:10.1109/TIM.2011.2122150 Google Scholar
11. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932 Google Scholar
12. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382 Google Scholar
13. Baker-Jarvis, J., M. D. Janezic, J. H. Gosvenor, and R. G. Geyer, Transmission/Reflection and Short-Circuit Line Methods for Measuring Permittivity and Permeability, NIST Tech. Note 1355, 1992.
14. Baker-Jarvis, J., M. D. Janezic, B. F. Riddle, R. T. Johnk, P. Kabos, C. L. Holloway, R. G. Geyer, and J. H. Gosvenor, Measuring the Permittivity and Permeability of Lossy Materials: Solids, Liquids, Metals, Building Materials, and Negative-Index Materials, NIST Tech. Note 1536, 2005.
15. ASTM Standard D5568 "Standard test method for measuring relative complex permittivity and relative magnetic permeability of solid materials at microwave frequencies using waveguide," ASTM International, West Conshohocken, PA, 2008. Google Scholar
16. Sharma, S. and D. Kaur, "Measurement of complex permittivity of polystyrene composite at 11.64 GHz using cavity perturbation technique," Applied Computational Electromagnetic Society Journal, Vol. 31, No. 1, 92-97, 2016. Google Scholar
17. Bridges, W. B., M. B. Klein, and E. Schweig, "Measurement of the dielectric constant and loss tangent of thallium mixed halide crystals KRS-5 and KRS-6 at 95 GHz," IEEE Trans. Microw. Theory Tech., Vol. 30, No. 3, 286-292, 1982.
doi:10.1109/TMTT.1982.1131063 Google Scholar
18. Baker-Jarvis, J., B. Riddle, and M. D. Janezic, Dielectric and Magnetic Properties of Printed Wiring Boards and Other Substrate Materials, NIST Tech. Note 1512, Washington, DC, USA, 1999.
19. Barber, J., J. C. Weatherall, B. T. Smith, S. Duffy, S. J. Goettler, and R. A. Krauss, "Millimeter wave measurements of explosives and simulants," Proc. SPIE 7670, Passive Millimeter-Wave Imaging Technology XIII, 76700E, April 27, 2010. Google Scholar
20. Baharudin, E., A. Ismail, A. R. H. Alhawari, E. S. Zainudin, D. L. A. A. Majid, and F. C. Seman, "Investigate of wave absorption performance for oil palmfrond and empty fruit bunch at 5.8 GHz," International Journal of Advanced and Applied Sciences, Vol. 9, 335-348, 2017. Google Scholar
21. Crowgey, B. R., J. Tang, E. J. Rothwell, B. Shanker, and L. C. Kempel, "A waveguide verification standard design procedure for the microwave characterization of magnetic materials," Progress In Electromagnetics Research, Vol. 150, 29-40, 2015.
doi:10.2528/PIER14100504 Google Scholar
22. Deb, K., Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & Sons, LTD, 2001.
23. Rothwell, E. J., J. L. Frasch, S. M. Ellison, P. Chahal, and R. O. Ouedraogo, "Analysis of the Nicolson-Ross-Weir method for characterizing the electromagnetic properties of engineered materials," Progress In Electromagnetics Research, Vol. 157, 31-47, 2016.
doi:10.2528/PIER16071706 Google Scholar
24. D’Auria, M., W. J. Otter, J. Hazell, B. T. W. Gillatt, C. Long-Collins, N. M. Ridler, and S. Lucyszyn, "3-D printed metal-pipe rectangular waveguides," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 5, No. 9, 1339-1349, 2015.
doi:10.1109/TCPMT.2015.2462130 Google Scholar
25. Otter, W. J., N. M. Ridler, H. Yasukochi, K. Soeda, K. Konishi, J. Yumoto, M. Kuwata-Gonokami, and S. Lucyszyn, "3D printed 1.1 THz waveguides," Electron. Lett., Vol. 53, No. 7, 471-473, 2017.
doi:10.1049/el.2016.4662 Google Scholar