1. Burger, W. and M. Burge, Principles of Digital Image Processing: Fundamental Techniques, Springer, 2009.
2. Yang, M. and G. Zhang, "Unsupervised target detection in sar images using scattering center model and mean shift clustering algorithm," Progress In Electromagnetics Research Letters, Vol. 35, 11-18, 2012.
doi:10.2528/PIERL12071109 Google Scholar
3. Yang, M. and G. Zhang, "A dictionary-based image fusion for integration of SAR and optical images," Progress In Electromagnetics Research Letters, Vol. 49, 87-90, 2014.
doi:10.2528/PIERL14081801 Google Scholar
4. Diao, W., X. Mao, and V. Gui, "Metrics for performance evaluation of preprocessing algorithms in infrared small target images," Progress In Electromagnetics Research, Vol. 115, 35-53, 2011.
doi:10.2528/PIER11012412 Google Scholar
5. Zhao, B., S. Xiao, H. Lu, and J. Liu, "Point target detection in space-based infrared imaging system based on multi-direction filtering fusion," Progress In Electromagnetics Research M, Vol. 56, 145-156, 2017.
doi:10.2528/PIERM17030401 Google Scholar
6. Lipton, A. J., H. Fujiyoshi, and R. S. Patil, "Moving target classification and tracking from real-time video," Proceedings of Proc. IEEE Workshop Applications of Computer Vision, 8-14, Princeton, NJ, USA, 1998. Google Scholar
7. Caspi, Y. and M. Irani, "Spatio-temporal alignment of sequences," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 11, 1409-1424, 2002.
doi:10.1109/TPAMI.2002.1046148 Google Scholar
8. Barron, J. L., D. J. Fleet, and S. S. Beauchemin, "Performance of optical flow techniques," International Journal of Computer Vision, Vol. 12, No. 1, 43-77, 1994.
doi:10.1007/BF01420984 Google Scholar
9. Barranco, F., J. Diaz, E. Ros, and B. D. Pino, "Visual system based on artificial retina for motion detection," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), Vol. 39, No. 3, 752-762, 2009.
doi:10.1109/TSMCB.2008.2009067 Google Scholar
10. Horn, B. K. P. and B. G. Schunck, "Determining optical flow," Artificial intelligence, Vol. 17, No. 1-3, 185-203, 1981.
doi:10.1016/0004-3702(81)90024-2 Google Scholar
11. Lucas, B. D. and T. Kanade, "An iterative image registration technique with an application to stereo vision," Proceedings of International Joint Conference on Artificial Intelligence, 674-679, Vancouver, British Columbia, Canada, 1981. Google Scholar
12. Hu, W., T. Tan, L. Wang, and S. Maybank, "A survey on visual surveillance of object motion and behaviors," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), Vol. 34, No. 3, 334-352, 2004.
doi:10.1109/TSMCC.2004.829274 Google Scholar
13. Mhatre, S., S. Varma, and R. Nikhare, "Visual surveillance using absolute difference motion detection," Proceedings of IEEE International Conference on Technologies for Sustainable Development, 1-5, Mumbai, India, 2015. Google Scholar
14. Diao, W., X. Mao, H. Zheng, Y. Xue, and V. Gui, "Image sequence measures for automatic target tracking," Progress In Electromagnetics Research, Vol. 130, 447-472, 2012.
doi:10.2528/PIER12050810 Google Scholar
15. Li, C. and Y. Jiang, "An effective background reconstruction method for video objects detection," Proceedings of IEEE International Conference on Networking and Distributed Computing, 161-165, Hangzhou, China, 2012. Google Scholar
16. Jiang, S., Z. Wei, S. Wang, Z. Zhou, and J. Zhang, "A new algorithm for background extraction under video surveillance," Proceedings of IEEE Conference Anthology, 1-4, China, 2013. Google Scholar
17. Hou, Z. and C. Han, "A background reconstruction algorithm based on pixel intensity classification," Journal of Software, Vol. 16, No. 9, 1568-1576, 2005.
doi:10.1360/jos161568 Google Scholar
18. Zivkovic, Z. and F. V. D. Heijden, "Efficient adaptive density estimation per image pixel for the task of background subtraction," Pattern Recognition Letters, Vol. 27, No. 7, 773-780, 2006.
doi:10.1016/j.patrec.2005.11.005 Google Scholar
19. Kim, K., T. H. Chalidabhongse, D. Harwood, and L. Davis, "Real-time foreground-background segmentation using codebook model," Real-Time Imaging, Vol. 11, No. 3, 172-185, 2005.
doi:10.1016/j.rti.2004.12.004 Google Scholar
20. Barnich, O. and M. Van Droogenbroeck, "ViBe: A universal background subtraction algorithm for video sequences," IEEE Transactions on Image Processing, Vol. 20, No. 6, 1709-1724, 2011.
doi:10.1109/TIP.2010.2101613 Google Scholar
21. Aubert, G. and P. Kornprobst, Mathematical Problems in Image Processing, Partial Differential Equations and the Calculus of Cariations, Springer, 2006.
22. Kornprobst, P., R. Deriche, and G. Aubert, "Image sequence analysis via partial differential equations," Journal of Mathematical Imaging and Vision, Vol. 11, No. 1, 5-26, 1999.
doi:10.1023/A:1008318126505 Google Scholar
23. Francois, A. and G. Medioni, "Adaptive color background modeling for real-time segmentation of video streams," Proceedings of International Conference on Imaging Science, System and Technology, 1-6, 1999. Google Scholar
24. Cremers, D. and S. Soatto, "Variational space-time motion segmentation," Proceedings of IEEE International Conference on Computer Vision, 886-893, Nice, France, 2003.
doi:10.1109/ICCV.2003.1238442 Google Scholar
25. Cremers, D. and S. Soatto, "Motion competition: A variational approach to piecewise parametric motion segmentation," International Journal of Computer Vision, Vol. 62, No. 3, 249-265, 2005.
doi:10.1007/s11263-005-4882-4 Google Scholar
26. Aubert, G. and J. Aujol, "A variational approach to removing multiplicative noise," Siam Journal on Applied Mathematics, Vol. 68, No. 4, 925-946, 2008.
doi:10.1137/060671814 Google Scholar
27. Bar, L., B. Berkels, M. Rumpf, and G. Sapiro, "A variational framework for simultaneous motion estimation and restoration of motion-blurred video," Proceedings of IEEE International Conference on Computer Vision, 1-8, Rio de Janeiro, Brazil, 2007. Google Scholar
28. Tikhonov, A. N. and V.Y. Arsenin, Solutions of Ill-posed Problems, Winston and Sons, 1977.
29. Rudin, L., S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," Physica D, Vol. 60, No. 1-4, 259-268, 1992.
doi:10.1016/0167-2789(92)90242-F Google Scholar
30. Reza, H., B. Ngu, and B. Tuong, "Visual tracking in background subtracted image sequences via multi-bernoulli filtering," IEEE Transactions on Signal Processing, Vol. 61, No. 2, 392-397, 2012. Google Scholar