1. Coleman, J. N., S. Curran, A. B. Dalton, A. P. Davey, B. McCarthy, W. Blau, and R. C. Barklie, "Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite," Phys. Rev. B, Vol. 58, 7462-7495, 1998.
doi:10.1103/PhysRevB.58.R7492 Google Scholar
2. Berhan, L. and A. M. Sastry, "Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models," Phys. Rev. E, Vol. 75, 1-8, 2007. Google Scholar
3. Eletskii, A. V., A. A. Knizhnik, B. V. Potapkin, and J. M. Kenny, "Electrical characteristics of carbon nanotube-doped composites," Physics --- Uspekhi, Vol. 58, 225-270, 2015.
doi:10.3367/UFNe.0185.201503a.0225 Google Scholar
4. Foygel, M., R. D. Morris, D. Anez, S. French, and V. L. Sobolev, "Theoretical and computational studies of carbon nanotube composites and suspensions:Electrical and thermal conductivity," Phys. Rev. B, Vol. 71, 104201.1-104201.8, 2005.
doi:10.1103/PhysRevB.71.104201 Google Scholar
5. Ma, H. M. and X.-L. Gao, "A three-dimensional Monte Carlo model for electrically conductive polymer matrix composites filled with curved fibers," Polymer, Vol. 49, 4230-4238, 2008.
doi:10.1016/j.polymer.2008.07.034 Google Scholar
6. Gu, H., J. Wang, and C. Yu, "Three-dimensional modeling of percolation behavior of electrical conductivity in segregated network polymer nanocomposites using Monte Carlo method," Advances in Materials, Vol. 5, 1-8, 2016.
doi:10.11648/j.am.20160501.11 Google Scholar
7. Lin, K. C., D. Lee, L. An, and H. J. Young, "Finite-size scaling features of electric conductivity percolation in nanocomposites," Nanoscience and Nanoengineering, Vol. 1, 15-22, 2013. Google Scholar
8. Ning, H., M. Zen, Y. Cheng, and Y. Go, "The electrical properties of polymernanocomposites with carbon nanotubefillers," Nanotechnology, Vol. 19, 215701, 2008.
doi:10.1088/0957-4484/19/21/215701 Google Scholar
9. Sagalianov, I., L. Vovchenko, L. Matzui, and O. Lazarenko, "Synergistic enhancement of the percolation threshold in hybrid polymeric nanocomposites based on carbon nanotubes and graphite nanoplatelets," Nanoscale Research Letters, Vol. 12, No. 140, 2017. Google Scholar
10. Wang, X., Q. Li, J. Xie, Z. Jin, J. Wang, and Y. Li, "Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates," Nano Lett., Vol. 9, 3137-3141, 2009.
doi:10.1021/nl901260b Google Scholar
11. Attiya, A. M., "Lower frequency limit of carbon nanotube antenna," Progress In Electromagnetics Research, Vol. 94, 419-433, 2009.
doi:10.2528/PIER09062001 Google Scholar
12. Aidi, M. and T. Aguili, "Electromagnetic modeling of coupled carbon nanotube dipole antennas based on integral equations system," Progress In Electromagnetics Research M, Vol. 40, 179-183, 2014.
doi:10.2528/PIERM14111404 Google Scholar
13. Mikki, S. M. and A. A. Kishk, "Derivation of the carbon nanotube susceptibility tensor using lattice dynamics formalism," Progress In Electromagnetics Research B, Vol. 9, 1-26, 2008.
doi:10.2528/PIERB08082301 Google Scholar
14. Bychanok, D., G. Gorokhov, D. Meisak, P. Kuzhir, S. A. Maksimenko, Y. Wang, Z. Han, X. Gao, and H. Yue, "Design of carbon nanotube-based broadband radar absorber for ka-band frequency range," Progress In Electromagnetics Research M, Vol. 53, 9-16, 2017.
doi:10.2528/PIERM16090303 Google Scholar
15. Dai, Q., H. Butt, R. Rajasekharan, T. D. Wilkinson, and G. A. J. Amaratunga, "Fabrication of carbon nanotubes on inter-digitated metal electrode for switchable nanophotonic devices," Progress In Electromagnetics Research, Vol. 127, 65-77, 2012.
doi:10.2528/PIER12022603 Google Scholar
16. Savi, P., M. Yasir, M. Giorcelli, and A. Tagliaferro, "The effect of carbon nanotubes concentration on complex permittivity of nanocomposites," Progress In Electromagnetics Research M, Vol. 55, 203-209, 2017.
doi:10.2528/PIERM16121901 Google Scholar
17. Grimmett, G., Percolation and Disordered Systems, Springer-Verlag, Berlin, 1997.
18. Hesselbo, B. and R. B. Stinchcombe, "Monte Carlo simulation and global optimization without parameters," Phys. Rev. Lett., Vol. 74, 2151-2155, 1995.
doi:10.1103/PhysRevLett.74.2151 Google Scholar
19. Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright, "Convergence properties of the nelder-mead simplex method in low dimensions," SIAM Journal of Optimization, Vol. 9, 112-147, 1998.
doi:10.1137/S1052623496303470 Google Scholar
20. Press, W. H., S. A. Teukovsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++, Cambridge University Press, 2002.
21. McCaffrey, J. D., "Amoeba method optimization using C#," Microsofts MSDN Magazine, Vol. 28, No. 6, 2013, Availabe at: https://msdn.microsoft.com/en-us/magazine/dn201752.aspx. Google Scholar