Vol. 69
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-06-04
Comparative Study of the Meissner and Skin Effects in Superconductors
By
Progress In Electromagnetics Research M, Vol. 69, 69-76, 2018
Abstract
The Meissner effect is studied by using an approach based on Newton and Maxwell's equations. The objective is to assess the relevance of London's equation and shed light on the connection between the Meissner and skin effects. The properties of a superconducting cylinder, cooled in a magnetic field, are accounted for within the same framework. The radial Hall effect is predicted. The energy, associated with the Meissner effect, is calculated and compared with the binding energy of the superconducting phase with respect to the normal one.
Citation
Jacob Szeftel Nicolas Sandeau Antoine Khater , "Comparative Study of the Meissner and Skin Effects in Superconductors," Progress In Electromagnetics Research M, Vol. 69, 69-76, 2018.
doi:10.2528/PIERM18012805
http://www.jpier.org/PIERM/pier.php?paper=18012805
References

1. Meissner, W. and R. Ochsenfeld, "Ein neuer Effekt bei Eintritt der Supraleitfaehigkeit," Naturwiss., Vol. 21, 787, 1933.
doi:10.1007/BF01504252

2. Ashcroft, N. W. and N. D. Mermin, Solid State Physics, Saunders College, 1976.

3. De Gennes, P. G., Superconductivity of Metals and Alloys, Addison-Wesley, Reading, MA, 1989.

4. Schrieffer, J. R., Theory of Superconductivity, Addison-Wesley, 1993.

5. London, F., Superfluids, Vol. 1, Wiley, 1950.

6. Pippard, A. B., "The surface impedance of superconductors and normal metals at high frequencies," Proc. Roy. Soc. A, Vol. 203, 98, 1950.
doi:10.1098/rspa.1950.0128

7. Parks, R. D., Superconductivity, CRC Press, 1969.

8. Edwards, W. F., "Classical derivation of the London equations," Phys. Rev. Lett., Vol. 47, 1863, 1981.
doi:10.1103/PhysRevLett.47.1863

9. Essen, H. and M. Fiolhais, "Meissner effect, diamagnetism, and classical physics: A review," Am. J. Phys., Vol. 80, 164, 2012.
doi:10.1119/1.3662027

10. Prytz, K. A., "Meissner effect in classical physics," Progress In Electromagnetics Research M, Vol. 64, 1-7, 2018.

11. Bardeen, J., L. N. Cooper, and J. R. Schrieffer, "Theory of superconductivity," Phys. Rev., Vol. 108, 1175, 1957.
doi:10.1103/PhysRev.108.1175

12. Cooper, L. N., "Bound electron pairs in a degenerate fermi gas," Phys. Rev., Vol. 104, 1189, 1956.
doi:10.1103/PhysRev.104.1189

13. Henyey, F. S., "Distinction between a perfect conductor and a superconductor," Phys. Rev. Lett., Vol. 49, 416, 1982.
doi:10.1103/PhysRevLett.49.416

14. Hashimoto, K., et al., "A sharp peak of the zero-temperature penetration depth at optimal composition in BaFe2(As1−xPx)2," Science, Vol. 336, 1554, 2012.
doi:10.1126/science.1219821

15. Gordon, R. T., et al., "Doping evolution of the absolute value of the London penetration depth and superfluid density in single crystals of Ba(Fe1−xCox)2As2," Phys. Rev. B, Vol. 82, 054507, 2010.
doi:10.1103/PhysRevB.82.054507

16. Jackson, J. D., Classical Electrodynamics, John Wiley, 1998.

17. Born, M. and E. Wolf, Principles of Optics, Cambridge University Press, 1999.
doi:10.1017/CBO9781139644181

18. Szeftel, J., N. Sandeau, and A. Khater, "Study of the skin effect in superconducting materials," Phys. Lett. A, Vol. 381, 1525, 2017.
doi:10.1016/j.physleta.2017.02.051

19. Landau, L. D. and E. M. Lifshitz, Statistical Physics, Pergamon Press, London, 1959.