Vol. 74
Latest Volume
All Volumes
PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-10-11
Engineering Laser-Based Diagnostic in a Hot Wind Tunnel Jet: Measurement of the Temperature Structure Coefficient by Using an Optimization Technique
By
Progress In Electromagnetics Research M, Vol. 74, 93-103, 2018
Abstract
This paper is devoted to an engineering laser-based diagnostic technique which is able to extract the value of the temperature structure coefficient in a hot turbulent wind tunnel jet, by using a thin laser beam which is sent into the jet. Some experimental investigations are carried out to characterize the jet under study and the probabilities of the positions of the laser beam impact on a photocell are measured. The theoretical values of the same probabilities are computed by assuming that the laser beam direction is a Markov random process. By means of an optimization technique with constraints, based on the Golden Section algorithm, the temperature structure coefficient of the jet is determined. The validity of the result obtained is proved by a good agreement which is observed in the comparison between another parameter computed from that result and the previously published data.
Citation
Maurice Lamara, Elisabeth Ngo Nyobe, and Elkana Pemha, "Engineering Laser-Based Diagnostic in a Hot Wind Tunnel Jet: Measurement of the Temperature Structure Coefficient by Using an Optimization Technique," Progress In Electromagnetics Research M, Vol. 74, 93-103, 2018.
doi:10.2528/PIERM18063003
References

1. Monin, S. A. and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, MIT Press, Cambridge, 1975.

2. Pemha, E. and E. Ngo Nyobe, "Genetic algorithm approach and experimental confirmation of a laser-based diagnostic technique for the local thermal turbulence in a hot wind tunnel jet," Progress In Electromagnetics Research B, Vol. 28, 325-350, 2011.
doi:10.2528/PIERB10123102

3. Comte-Bellot, G., "Hot-wire anemometry," Annual Review of Fluid Mechanics, Vol. 8, 1976.
doi:10.1146/annurev.fl.08.010176.001233

4. Bilong II, J., E. Ngo Nyobe, J. Hona, and E. Pemha, "Correlations of deflection angles of a laser beam in a hot turbulent jet of air: Theoretical determination and experimental measurement of the structure coefficient of refractive index fluctuations," Progress In Electromagnetics Research B, Vol. 42, 425-453, 2012.
doi:10.2528/PIERB12050903

5. Tatarskii, V. I., Wave Propagation in a Turbulent Medium, McGraw-Hill, NY, 1961.

6. Ishimaru, A., Wave Propagation and Scattering in Random Media, Academic Press, NY, 1978.

7. Chernov, L. A., Wave Propagation in a Random Medium, McGraw-Hill, NY, 1960.

8. Pemha, E., B. Gay, and A. Tailland, "Measurement of the diffusion coefficient in a heated plane airstream," Physics of Fluids A, Vol. 5, No. 6, 1289-1295, 1993.
doi:10.1063/1.858565

9. Kiefer, J. H. and R. W. Lutz, "Simple quantitative schlieren technique of high sensitivity for shock tube densitometry," Physics of Fluids, Vol. 8, No. 7, 1393-1394, 1965.
doi:10.1063/1.1761417

10. Kiefer, J. H. and J. C. Hajduk, "Rate measurements in shock waves with the laser-schlieren technique," Proc. 12th Int. Symp. on Schock Waves and Tubes, A. lifshitz, J. Rom, ed., 97–110, Magnet Press, Jerusalem, 1980.

11. Vanderplaats, G. N., Numerical Optimization Techniques for Engineering Design with Applications, McGraw-Hill, NY, 1984.

12. Beck, J. V. and K. J. Arnold, Parameter Estimation in Engineering and Science, John Wiley and Sons, NY, 1977.

13. Consortini, A., G. Fusco, F. Rigal, A. Agabi, and Y. Y. Sun, "Experimental verification of thinbeam wandering dependence on distance in strong indoor turbulence," Waves in Random Media, Vol. 7, 521-529, 1997.

14. Ngo Nyobe, E., E. Pemha, J. Hona, J. Bilong II, and M. Lamara, "Measurement of the structure coefficient of refractive index fluctuations in a turbulent premixed butane-air flame by means of a laser-based interferometer technique," Optics and Lasers in Engineering, Vol. 59, 41-49, 2014.
doi:10.1016/j.optlaseng.2014.02.009