Vol. 74
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-10-03
Influence of Steel Non-Linearity in Assessing 50-60 Hz Interference on Pipelines
By
Progress In Electromagnetics Research M, Vol. 74, 1-10, 2018
Abstract
This paper deals with the influence of steel non-linearity when calculating the induced current/voltage on a pipeline circuit with earth return under 50-60 Hz induction by power lines or electrified railway lines. By having at disposal the measured curves of the per unit length pipe internal impedance versus the current flowing in it, one can calculate induced voltage and current on the pipeline-earth circuit by means of the successive approximations method. The paper presents some comparison of the results when ignoring or not the steel pipe non-linearity. In certain cases, the differences can be significant.
Citation
Giovanni Lucca, "Influence of Steel Non-Linearity in Assessing 50-60 Hz Interference on Pipelines," Progress In Electromagnetics Research M, Vol. 74, 1-10, 2018.
doi:10.2528/PIERM18071811
References

1. ITU-T "Directives concerning the protection of telecommunication lines against harmful effects from electric power and electri ed railway lines," Calculating Induced Voltages and Currents in Practical Cases, Vol. II, ITU, 1999.        Google Scholar

2. ITU-T "Directives concerning the protection of telecommunication lines against harmful effects from electric power and electri ed railway lines," Capacitive, Inductive and Conductive Coupling: Physical Theory and Calculation Methods, Vol. III, ITU, 1989.        Google Scholar

3. CIGRE "Guide on the in uence of high voltage A. C. power systems on metallic pipeline," CIGRE, 1995.        Google Scholar

4. EPRI "Mutual design considerations for overhead AC transmission lines and gas transmission pipelines," Engineering Analysis, Vol. 1, EPRI, 1978.        Google Scholar

5. EPRI "Power line fault current coupling to nearby natural gas pipelines," Analytic Methods and Graphical Techniques, Vol. 1, EPRI, 1987.        Google Scholar

6. Dawalibi, F. P. and R. D. Southey, "Analysis of electrical interference from power lines to gas pipelines part I: Computation methods," IEEE Trans. on Power Deliv., Vol. 4, No. 3, 1840-1846, 1989.
doi:10.1109/61.32680        Google Scholar

7. CIGRE "A.C. Corrosion on metallic pipelines due to interference from AC power lines | Phenomenon, modelling and countermeasures,", CIGRE, 2006.        Google Scholar

8. Sunde, E. D., Earth Conduction Effects in Transmission Systems, D. Van Nostrand, 1st Edition, 1949.

9. Christoforidis, G. C., D. P. Labridis, and P. S. Dokopoulos, "Inductive interference calculation on imperfect coated pipelines due to nearby faulted parallel lines," Electric Power Systems Research, Vol. 66, 139-148, 2003.
doi:10.1016/S0378-7796(03)00018-X        Google Scholar

10. Christoforidis, G. C., D. P. Labridis, and P. S. Dokopoulos, "A hybrid method for calculating the inductive interference caused by faulted power lines to nearby buried pipelines," IEEE Trans. on Power Deliv., Vol. 20, No. 2, 1465-1473, 2005.
doi:10.1109/TPWRD.2004.839186        Google Scholar

11. Borucki, R., H. Szukalski, G. Szymanski, and A. Zietkowiak, "In uence of earth-fault current in overhead AC Transmission lines on underground conductors," CIGRE Symposium, 22-81, Stockholm, Sweden, 1981.        Google Scholar

12. Machczynski, W. and G. Szymanski, "Effects of short-circuit currents in an overhead AC transmission line on underground conductors," Rozprawy Elektrotechniczne, Vol. 27, No. 4, 967-978, 1981.        Google Scholar

13. Lucca, G., "Two steps numerical method for calculating the AC interference from a faulty power line on nearby buried pipelines," Euro. Trans. Electr. Power, Vol. 21, No. 7, 2037-2052, 2011.
doi:10.1002/etep.557        Google Scholar

14. Micu, D. D., L. Czumbil, G. Christoforidis, and A. Ceclan, "Layer recurrent neural network solution for an electromagnetic interference problem," IEEE Trans. on Magnetics, Vol. 47, No. 5, 1410-1413, 2011.
doi:10.1109/TMAG.2010.2091494        Google Scholar

15. Micu, D. D., L. Czumbil, G. C. Christoforidis, A. Ceclan, and D. Stet, "Evaluation of induced AC voltages in underground metallic pipeline," COMPEL, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 31, No. 4, 1133-1143, 2012.
doi:10.1108/03321641211227375        Google Scholar

16. Micu, D. D., G. C. Christoforidis, and L. Czumbil, "AC Interference on pipelines due to double circuit power lines: A detailed study," Electric Power Systems Research, Vol. 103, 1-8, 2013.
doi:10.1016/j.epsr.2013.04.008        Google Scholar

17. Czarnywojtek, P. and W. Machczynski, "Wave propagation effects induced in transmission pipelines by EMI from power lines," Electr. Eng., 2017.        Google Scholar

18. Cristofolini, A., A. Popoli, and L. Sandrolini, "A comparison between Carson's formulae and a 2D FEM approach for the evaluation of AC interference caused by overhead power lines on buried metallic pipelines," Progress In Electromagnetics Research C, Vol. 79, 39-48, 2017.
doi:10.2528/PIERC17080501        Google Scholar

19. Lucca, G., "Impedances internes de conducteurs ferromagnetiques dans les problemes d'interference a frequence industrielle," 8eme Colloque International sur la Compatibilite Electromagnetique, Lille, France, September 1996.        Google Scholar

20. Lucca, G., "Electromagnetic interference from power lines on pipelines: in uence of pipe insulating coating degradation," Int. Trans. Electr. Energ. Syst., Vol. 26, No. 12, 2699-2712, 2016.
doi:10.1002/etep.2229        Google Scholar

21. Czarnywojtek, P. and W. Machczynski, "Computer simulation of responses of earth-return circuits to the AC and DC external excitation," Euro. Trans. Electr. Power, Vol. 13, No. 3, 173-183, 2003.
doi:10.1002/etep.4450130306        Google Scholar

22. Lucca, G. and G. L. Solbiati, "Transmission line circuit with non linear impedances: application to EMC problems," 11th International Zurich Symposium on Electromagnetic Compatibility, Zurich, Switzerland, March 1995.        Google Scholar

23. Varju, G. and G. L. Karolyi, "Calculating the screening effect of a metal cable sheath with the consideration of nonlinearity due to steel armouring," 10th International Wroc law Symposium on Electromagnetic Compatibility, 252-256, Wroclaw, Poland, June 1990.        Google Scholar