Vol. 88
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-11-15
A Design of Broadband and Low-Loss Multilayer Antireflection Coating in THz Region
By
Progress In Electromagnetics Research C, Vol. 88, 117-131, 2018
Abstract
An approach to the design and the realization of a broadband multilayer anti-reflection (AR) coating with high transmission is proposed in this study. A binominal multi-section transformer is employed to efficiently determine the thickness and the refractive index of each matching layer, while those layers can be further realized by doping different fractions of subwavelength-size silicon powders (for relatively-high-index layers) or air pores (for relatively-low-index layers) into the low-loss HDPE polymer host. Based on this scheme, we design a ten-layer AR coating for widely used silicon wafer. The designed AR coatings are double-sided integrated with a 375-μm-thick silicon wafer, which can enhance the overall THz transmission to higher than 95.00% from 0.250 THz to 0.919 THz (114.46% fractional bandwidth) for either TE-polarized or TM-polarized THz beam incident from an arbitrary angle below 50˚.
Citation
Hsin-Yu Yao, Zih-Yu Chen, and Tsun-Hun Chang, "A Design of Broadband and Low-Loss Multilayer Antireflection Coating in THz Region," Progress In Electromagnetics Research C, Vol. 88, 117-131, 2018.
doi:10.2528/PIERC18072603
References

1. Raut, H. K., et al. "Anti-reflective coatings: A critical, in-depth review," Energ. Environ. Sci., Vol. 4, No. 10, 3779-3804, Oct. 2011.
doi:10.1039/c1ee01297e        Google Scholar

2. Oh, S. J., et al. "Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings," Opt. Express, Vol. 21, A157-A166, 2012.        Google Scholar

3. Kaminski, P. M., F. Lisco, and J. M. Walls, "Multilayer broadband antireflective coatings for more efficient thin film CdTe solar cells," IEEE J. Photovolt., Vol. 4, No. 1, 452-456, Jan. 2014.
doi:10.1109/JPHOTOV.2013.2284064        Google Scholar

4. Chhajed, S., et al. "Nanostructured multilayer tailored-refractive-index antireflection coating for glass with broadband and omnidirectional characteristics," Appl. Phys. Express, Vol. 4, No. 5, 052503, May 2011.
doi:10.1143/APEX.4.052503        Google Scholar

5. Wagner-Gentner, A., et al. "Low loss THz window," Infrared Phys. Technol., Vol. 48, No. 3, 249-253, Aug. 2006.
doi:10.1016/j.infrared.2006.01.004        Google Scholar

6. Lo, S. Z. and T. E. Murphy, "Nanoporous silicon multilayers for terahertz filtering," Opt. Lett., Vol. 34, No. 19, 2921-3, Oct. 1, 2009.        Google Scholar

7. Li, Y., et al. "Tunable terahertz-mirror and multi-channel terahertz-filter based on one-dimensional photonic crystals containing semiconductors," J. Appl. Phys., Vol. 110, No. 7, 073111, Oct. 1, 2011.
doi:10.1063/1.3650245        Google Scholar

8. Ito, H., et al. "Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes," Semicond. Sci. Technol., Vol. 20, No. 7, S191-S198, Jul. 2005.
doi:10.1088/0268-1242/20/7/008        Google Scholar

9. Scherger, B., et al. "Terahertz lenses made by compression molding of micropowders," Appl. Opt., Vol. 50, No. 15, 2256-2262, May 20, 2011.
doi:10.1364/AO.50.002256        Google Scholar

10. Vlasov, Y., W. M. J. Green, and F. Xia, "High-throughput silicon nanophotonic wavelengthinsensitive switch for on-chip optical networks," Nat. Photon., Vol. 2, No. 4, 242-246, Apr. 2008.
doi:10.1038/nphoton.2008.31        Google Scholar

11. Gatesman, A. J., et al. "An anti-reflection coating for silicon optics at terahertz frequencies," IEEE Microw. Guided Wave Lett., Vol. 10, No. 7, 264-266, Jul. 2000.
doi:10.1109/75.856983        Google Scholar

12. Kawase, K. and N. Hiromoto, "Terahertz-wave antireflection coating on Ge and GaAs with fused quartz," Appl. Opt., Vol. 37, No. 10, 1862-6, Apr. 1, 1998.        Google Scholar

13. Exter, M. V. and D. Grischkowsky, "Characterization of an optoelectronic terahertz beam system," IEEE Trans. on Microwave Theory and Tech., Vol. 38, 1684-1691, 1990.
doi:10.1109/22.60016        Google Scholar

14. Hosako, I., "Multilayer optical thin films for use at terahertz frequencies: Method of fabrication," Appl. Opt., Vol. 44, No. 18, 3769-3773, Jun. 20, 2005.
doi:10.1364/AO.44.003769        Google Scholar

15. Poitras, D. and J. A. Dobrowolski, "Toward perfect antireflection coatings. 2. Theory," Appl. Opt., Vol. 43, No. 6, 1286-95, Feb. 20, 2004.        Google Scholar

16. Dobrowolski, J. A., et al. "Toward perfect antireflection coatings. 3. Experimental results obtained with the use of Reststrahlen materials," Appl. Opt., Vol. 45, No. 7, 1555-1562, Mar. 1, 2006.
doi:10.1364/AO.45.001555        Google Scholar

17. Chen, Y. W., P. Y. Han, and X. C. Zhang, "Tunable broadband antireflection structures for silicon at terahertz frequency," Appl. Phys. Lett., Vol. 94, No. 4, 041106, Jan. 26, 2009.
doi:10.1063/1.3075059        Google Scholar

18. Bruckner, C., et al. "Broadband antireflective surface-relief structure for THz optics," Opt. Express, Vol. 15, 779-789, 2007.
doi:10.1364/OE.15.000779        Google Scholar

19. Yang, L., et al. "Hybrid moth-eye structures for enhanced broadband antireflection characteristics," Appl. Phys. Express, Vol. 3, No. 10, 102602, 2010.
doi:10.1143/APEX.3.102602        Google Scholar

20. Kim, K.-H. and Q.-H. Park, "Perfect anti-reflection from first principles," Sci. Rep., Vol. 3, 1062, 2013.
doi:10.1038/srep01062        Google Scholar

21. Huang, Y. F., et al. "Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures," Nat. Nanotechnol., Vol. 2, No. 12, 770-4, Dec. 2007.
doi:10.1038/nnano.2007.389        Google Scholar

22. Yang, J., et al. "Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing," Light Sci. Appl., Vol. 3, No. 7, e185, 2014.
doi:10.1038/lsa.2014.66        Google Scholar

23. Huang, T.-Y., et al. "Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process," Sci. Rep., Vol. 5, 18605, 2015.        Google Scholar

24. Nemati, A., et al. "Tunable and reconfigurable metasurfaces and metadevices," Opto-Electronic Advances, Vol. 1, No. 5, 180009, 2018.
doi:10.29026/oea.2018.180009        Google Scholar

25. Babicheva, V. E., et al. "Reflection compensation mediated by electric and magnetic resonances of all-dielectric metasurfaces," J. Opt. Soc. Am. B, Vol. 34, No. 7, D18-D28, 2017.
doi:10.1364/JOSAB.34.000D18        Google Scholar

26. Zhang, H., et al. "High-efficiency dielectric metasurfaces for polarization-dependent terahertz wavefront manipulation," Adv. Opt. Mater., Vol. 6, No. 1, 1700773, 2018.
doi:10.1002/adom.201700773        Google Scholar

27. Dupuis, A., et al. "Transmission measurements of hollow-core THz Bragg fibers," J. Opt. Soc. Am. B, Vol. 28, No. 4, 896-907, Apr. 2011.
doi:10.1364/JOSAB.28.000896        Google Scholar

28. Ung, B., et al. "High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss," J. Opt. Soc. Am. B, Vol. 28, No. 4, 917-921, Apr. 2011.
doi:10.1364/JOSAB.28.000917        Google Scholar

29. Kuo, M. L., et al. "Realization of a near-perfect antireflection coating for silicon solar energy utilization," Opt. Lett., Vol. 33, No. 21, 2527-9, Nov. 1, 2008.        Google Scholar

30. Southwell, W. H., "Gradient-index antireflection coatings," Opt. Lett., Vol. 8, No. 11, 584-6, Nov. 1, 1983.        Google Scholar

31. Poza, D. M., Microwave Engineering, 3rd Ed., John Wiley & Sons, 2006.

32. Dai, J. M., et al. "Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon," J. Opt. Soc. Am. B, Vol. 21, No. 7, 1379-1386, Jul. 2004.
doi:10.1364/JOSAB.21.001379        Google Scholar

33. Xi, J. Q., et al. "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nat. Photon., Vol. 1, No. 3, 176-179, Mar. 2007.
doi:10.1038/nphoton.2007.26        Google Scholar

34. Myroshnychenko, V. and C. Brosseau, "Finite-element modeling method for the prediction of the complex effective permittivity of two-phase random statistically isotropic heterostructures," J. Appl. Phys., Vol. 97, No. 4, 044101, Feb. 15, 2005.
doi:10.1063/1.1835544        Google Scholar

35. Scheller, M., et al. "Modelling heterogeneous dielectric mixtures in the terahertz regime: A quasistatic effective medium theory," J. Phys. D: Appl. Phys., Vol. 42, No. 6, 065415, Mar. 21, 2009.
doi:10.1088/0022-3727/42/6/065415        Google Scholar

36. Jin, Y. S., G. J. Kim, and S. G. Jeon, "Terahertz dielectric properties of polymers," J. Korean Phys. Soc., Vol. 49, No. 2, 513-517, Aug. 2006.        Google Scholar

37. Ma, L., et al. "Wide-band “Black silicon” based on porous silicon," Appl. Phys. Lett., Vol. 88, No. 17, 171907, 2006.
doi:10.1063/1.2199593        Google Scholar

38. Park, S.-G., et al. "Subwavelength silicon through-hole arrays as an all-dielectric broadband terahertz gradient index metamaterial," Appl. Phys. Lett., Vol. 105, No. 9, 091101, 2014.
doi:10.1063/1.4894054        Google Scholar

39. Li, Q. X. and L. M. Matuana, "Foam extrusion of high density polyethylene/wood-flour composites using chemical foaming agents," J. Appl. Polym. Sci., Vol. 88, No. 14, 3139-3150, Jun. 28, 2003.
doi:10.1002/app.12003        Google Scholar

40. Gandhi, N. A. A., K. K. Gaur, S. J. A. Rizvi, V. Tiwari, and N. Bhatnagar, "Ultrasound assistedcyclicsolid-statefoamingforfabricatingultra-low density porousacrylonitrilebutadiene- styrene foams," Mater. Lett., Vol. 94, 76-78, 2013.
doi:10.1016/j.matlet.2012.12.024        Google Scholar

41. Zhao, X. and Y. C. Shin, "Femtosecond laser drilling of high-aspect ratio microchannels in glass," Appl. Phys. A, Vol. 104, No. 2, 713-719, Aug. 2011.
doi:10.1007/s00339-011-6326-z        Google Scholar

42. Li, Z. Y. and L. L. Lin, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E, Vol. 67, No. 4, Pt. 2, 046607, Apr. 2003.        Google Scholar

43. Winful, H. G., "Group delay, stored energy, and the tunneling of evanescent electromagnetic waves," Phys. Rev. E, Vol. 68, No. 1, Pt. 2, 016615, Jul. 2003.        Google Scholar