1. Raut, H. K., et al. "Anti-reflective coatings: A critical, in-depth review," Energ. Environ. Sci., Vol. 4, No. 10, 3779-3804, Oct. 2011.
doi:10.1039/c1ee01297e Google Scholar
2. Oh, S. J., et al. "Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings," Opt. Express, Vol. 21, A157-A166, 2012. Google Scholar
3. Kaminski, P. M., F. Lisco, and J. M. Walls, "Multilayer broadband antireflective coatings for more efficient thin film CdTe solar cells," IEEE J. Photovolt., Vol. 4, No. 1, 452-456, Jan. 2014.
doi:10.1109/JPHOTOV.2013.2284064 Google Scholar
4. Chhajed, S., et al. "Nanostructured multilayer tailored-refractive-index antireflection coating for glass with broadband and omnidirectional characteristics," Appl. Phys. Express, Vol. 4, No. 5, 052503, May 2011.
doi:10.1143/APEX.4.052503 Google Scholar
5. Wagner-Gentner, A., et al. "Low loss THz window," Infrared Phys. Technol., Vol. 48, No. 3, 249-253, Aug. 2006.
doi:10.1016/j.infrared.2006.01.004 Google Scholar
6. Lo, S. Z. and T. E. Murphy, "Nanoporous silicon multilayers for terahertz filtering," Opt. Lett., Vol. 34, No. 19, 2921-3, Oct. 1, 2009. Google Scholar
7. Li, Y., et al. "Tunable terahertz-mirror and multi-channel terahertz-filter based on one-dimensional photonic crystals containing semiconductors," J. Appl. Phys., Vol. 110, No. 7, 073111, Oct. 1, 2011.
doi:10.1063/1.3650245 Google Scholar
8. Ito, H., et al. "Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes," Semicond. Sci. Technol., Vol. 20, No. 7, S191-S198, Jul. 2005.
doi:10.1088/0268-1242/20/7/008 Google Scholar
9. Scherger, B., et al. "Terahertz lenses made by compression molding of micropowders," Appl. Opt., Vol. 50, No. 15, 2256-2262, May 20, 2011.
doi:10.1364/AO.50.002256 Google Scholar
10. Vlasov, Y., W. M. J. Green, and F. Xia, "High-throughput silicon nanophotonic wavelengthinsensitive switch for on-chip optical networks," Nat. Photon., Vol. 2, No. 4, 242-246, Apr. 2008.
doi:10.1038/nphoton.2008.31 Google Scholar
11. Gatesman, A. J., et al. "An anti-reflection coating for silicon optics at terahertz frequencies," IEEE Microw. Guided Wave Lett., Vol. 10, No. 7, 264-266, Jul. 2000.
doi:10.1109/75.856983 Google Scholar
12. Kawase, K. and N. Hiromoto, "Terahertz-wave antireflection coating on Ge and GaAs with fused quartz," Appl. Opt., Vol. 37, No. 10, 1862-6, Apr. 1, 1998. Google Scholar
13. Exter, M. V. and D. Grischkowsky, "Characterization of an optoelectronic terahertz beam system," IEEE Trans. on Microwave Theory and Tech., Vol. 38, 1684-1691, 1990.
doi:10.1109/22.60016 Google Scholar
14. Hosako, I., "Multilayer optical thin films for use at terahertz frequencies: Method of fabrication," Appl. Opt., Vol. 44, No. 18, 3769-3773, Jun. 20, 2005.
doi:10.1364/AO.44.003769 Google Scholar
15. Poitras, D. and J. A. Dobrowolski, "Toward perfect antireflection coatings. 2. Theory," Appl. Opt., Vol. 43, No. 6, 1286-95, Feb. 20, 2004. Google Scholar
16. Dobrowolski, J. A., et al. "Toward perfect antireflection coatings. 3. Experimental results obtained with the use of Reststrahlen materials," Appl. Opt., Vol. 45, No. 7, 1555-1562, Mar. 1, 2006.
doi:10.1364/AO.45.001555 Google Scholar
17. Chen, Y. W., P. Y. Han, and X. C. Zhang, "Tunable broadband antireflection structures for silicon at terahertz frequency," Appl. Phys. Lett., Vol. 94, No. 4, 041106, Jan. 26, 2009.
doi:10.1063/1.3075059 Google Scholar
18. Bruckner, C., et al. "Broadband antireflective surface-relief structure for THz optics," Opt. Express, Vol. 15, 779-789, 2007.
doi:10.1364/OE.15.000779 Google Scholar
19. Yang, L., et al. "Hybrid moth-eye structures for enhanced broadband antireflection characteristics," Appl. Phys. Express, Vol. 3, No. 10, 102602, 2010.
doi:10.1143/APEX.3.102602 Google Scholar
20. Kim, K.-H. and Q.-H. Park, "Perfect anti-reflection from first principles," Sci. Rep., Vol. 3, 1062, 2013.
doi:10.1038/srep01062 Google Scholar
21. Huang, Y. F., et al. "Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures," Nat. Nanotechnol., Vol. 2, No. 12, 770-4, Dec. 2007.
doi:10.1038/nnano.2007.389 Google Scholar
22. Yang, J., et al. "Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing," Light Sci. Appl., Vol. 3, No. 7, e185, 2014.
doi:10.1038/lsa.2014.66 Google Scholar
23. Huang, T.-Y., et al. "Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process," Sci. Rep., Vol. 5, 18605, 2015. Google Scholar
24. Nemati, A., et al. "Tunable and reconfigurable metasurfaces and metadevices," Opto-Electronic Advances, Vol. 1, No. 5, 180009, 2018.
doi:10.29026/oea.2018.180009 Google Scholar
25. Babicheva, V. E., et al. "Reflection compensation mediated by electric and magnetic resonances of all-dielectric metasurfaces," J. Opt. Soc. Am. B, Vol. 34, No. 7, D18-D28, 2017.
doi:10.1364/JOSAB.34.000D18 Google Scholar
26. Zhang, H., et al. "High-efficiency dielectric metasurfaces for polarization-dependent terahertz wavefront manipulation," Adv. Opt. Mater., Vol. 6, No. 1, 1700773, 2018.
doi:10.1002/adom.201700773 Google Scholar
27. Dupuis, A., et al. "Transmission measurements of hollow-core THz Bragg fibers," J. Opt. Soc. Am. B, Vol. 28, No. 4, 896-907, Apr. 2011.
doi:10.1364/JOSAB.28.000896 Google Scholar
28. Ung, B., et al. "High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss," J. Opt. Soc. Am. B, Vol. 28, No. 4, 917-921, Apr. 2011.
doi:10.1364/JOSAB.28.000917 Google Scholar
29. Kuo, M. L., et al. "Realization of a near-perfect antireflection coating for silicon solar energy utilization," Opt. Lett., Vol. 33, No. 21, 2527-9, Nov. 1, 2008. Google Scholar
30. Southwell, W. H., "Gradient-index antireflection coatings," Opt. Lett., Vol. 8, No. 11, 584-6, Nov. 1, 1983. Google Scholar
31. Poza, D. M., Microwave Engineering, 3rd Ed., John Wiley & Sons, 2006.
32. Dai, J. M., et al. "Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon," J. Opt. Soc. Am. B, Vol. 21, No. 7, 1379-1386, Jul. 2004.
doi:10.1364/JOSAB.21.001379 Google Scholar
33. Xi, J. Q., et al. "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nat. Photon., Vol. 1, No. 3, 176-179, Mar. 2007.
doi:10.1038/nphoton.2007.26 Google Scholar
34. Myroshnychenko, V. and C. Brosseau, "Finite-element modeling method for the prediction of the complex effective permittivity of two-phase random statistically isotropic heterostructures," J. Appl. Phys., Vol. 97, No. 4, 044101, Feb. 15, 2005.
doi:10.1063/1.1835544 Google Scholar
35. Scheller, M., et al. "Modelling heterogeneous dielectric mixtures in the terahertz regime: A quasistatic effective medium theory," J. Phys. D: Appl. Phys., Vol. 42, No. 6, 065415, Mar. 21, 2009.
doi:10.1088/0022-3727/42/6/065415 Google Scholar
36. Jin, Y. S., G. J. Kim, and S. G. Jeon, "Terahertz dielectric properties of polymers," J. Korean Phys. Soc., Vol. 49, No. 2, 513-517, Aug. 2006. Google Scholar
37. Ma, L., et al. "Wide-band “Black silicon” based on porous silicon," Appl. Phys. Lett., Vol. 88, No. 17, 171907, 2006.
doi:10.1063/1.2199593 Google Scholar
38. Park, S.-G., et al. "Subwavelength silicon through-hole arrays as an all-dielectric broadband terahertz gradient index metamaterial," Appl. Phys. Lett., Vol. 105, No. 9, 091101, 2014.
doi:10.1063/1.4894054 Google Scholar
39. Li, Q. X. and L. M. Matuana, "Foam extrusion of high density polyethylene/wood-flour composites using chemical foaming agents," J. Appl. Polym. Sci., Vol. 88, No. 14, 3139-3150, Jun. 28, 2003.
doi:10.1002/app.12003 Google Scholar
40. Gandhi, N. A. A., K. K. Gaur, S. J. A. Rizvi, V. Tiwari, and N. Bhatnagar, "Ultrasound assistedcyclicsolid-statefoamingforfabricatingultra-low density porousacrylonitrilebutadiene- styrene foams," Mater. Lett., Vol. 94, 76-78, 2013.
doi:10.1016/j.matlet.2012.12.024 Google Scholar
41. Zhao, X. and Y. C. Shin, "Femtosecond laser drilling of high-aspect ratio microchannels in glass," Appl. Phys. A, Vol. 104, No. 2, 713-719, Aug. 2011.
doi:10.1007/s00339-011-6326-z Google Scholar
42. Li, Z. Y. and L. L. Lin, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E, Vol. 67, No. 4, Pt. 2, 046607, Apr. 2003. Google Scholar
43. Winful, H. G., "Group delay, stored energy, and the tunneling of evanescent electromagnetic waves," Phys. Rev. E, Vol. 68, No. 1, Pt. 2, 016615, Jul. 2003. Google Scholar