1. Smith, D. R., J. B. Pendry, and M. C. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, No. 5685, 788-792, 2004.
doi:10.1126/science.1096796 Google Scholar
2. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628 Google Scholar
3. Shalaev, V. M., "Optical negative-index metamaterials," Nature Photonics, Vol. 1, No. 1, 41, 2007.
doi:10.1038/nphoton.2006.49 Google Scholar
4. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847 Google Scholar
5. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907 Google Scholar
6. Capasso, F., "Metasurfaces: From quantum cascade lasers to flat optics," 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1-3, IEEE, 2017. Google Scholar
7. Yu, N., P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, No. 6054, 333-337, 2011.
doi:10.1126/science.1210713 Google Scholar
8. Aieta, F., P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, "Aberrationfree ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Letters, Vol. 12, No. 9, 4932-4936, 2012.
doi:10.1021/nl302516v Google Scholar
9. Yu, N. and F. Capasso, "Flat optics with designer metasurfaces," Nature Materials, Vol. 13, No. 2, 139, 2014.
doi:10.1038/nmat3839 Google Scholar
10. Karimi, E., S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, "Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface," Light: Science & Applications, Vol. 3, No. 5, e167, 2014.
doi:10.1038/lsa.2014.48 Google Scholar
11. Ma, X., M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, and Z. Zhao, "A planar chiral meta-surface for optical vortex generation and focusing," Scientific Reports, Vol. 5, 10365, 2015.
doi:10.1038/srep10365 Google Scholar
12. Yu, S., L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, "Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain," Applied Physics Letters, Vol. 108, No. 12, 121903, 2016.
doi:10.1063/1.4944789 Google Scholar
13. Zhu, H. L., S. W. Cheung, K. L. Chung, and T. I. Yuk, "Linear-to-circular polarization conversion using metasurface,", Vol. 61, No. 9, 4615-4623, 2013. Google Scholar
14. Chen, H., J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, "Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances," Journal of Applied Physics, Vol. 115, No. 15, 154504, 2014.
doi:10.1063/1.4869917 Google Scholar
15. Estakhri, N. M. and A. Alu, "Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1775-1778, 2014.
doi:10.1109/LAWP.2014.2371894 Google Scholar
16. Ni, X., Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, "An ultrathin invisibility skin cloak for visible light," Science, Vol. 349, No. 6254, 1310-1314, 2015.
doi:10.1126/science.aac9411 Google Scholar
17. Ni, X., A. V. Kildishev, and V. M. Shalaev, "Metasurface holograms for visible light," Nature Communications, Vol. 4, 2807, 2013.
doi:10.1038/ncomms3807 Google Scholar
18. Minatti, G., M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonz´alez-Ovejero, M. Sabbadini, and S. Maci, "Modulated metasurface antennas for space: Synthesis analysis and realizations," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1288-1300, 2015.
doi:10.1109/TAP.2014.2377718 Google Scholar
19. Donda, K. D. and R. S. Hegde, "Rapid design of wide-area heterogeneous electromagnetic metasurfaces beyond the unit-cell approximation," Progress In Electromagnetics Research M, Vol. 60, 1-10, 2017.
doi:10.2528/PIERM17070405 Google Scholar
20. Cui, T. J., M. Q. Qi, X.Wan, J. Zhao, and Q. Cheng, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light: Science & Applications, Vol. 3, No. 10, e218, 2014.
doi:10.1038/lsa.2014.99 Google Scholar
21. Liu, S., T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, and H. Yuan, "Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves," Light: Science & Applications, Vol. 5, No. 5, e16076, 2016.
doi:10.1038/lsa.2016.76 Google Scholar
22. Chen, K., Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, "Geometric phase coded metasurface: From polarization dependent directive electromagnetic wave scattering to diffusionlike scattering," Scientific Reports, Vol. 6, 35968, 2016.
doi:10.1038/srep35968 Google Scholar
23. Wan, X., M. Q. Qi, T. Y. Chen, and T. J. Cui, "Field-programmable beam reconfiguring based on digitally-controlled coding metasurface," Scientific Reports, Vol. 6, 20663, 2016.
doi:10.1038/srep20663 Google Scholar
24. Tymchenko, M., J. S. Gomez-Diaz, J. Lee, N. Nookala, M. A. Belkin, and A. Alu, "Gradient nonlinear pancharatnam-berry metasurfaces," Physical Review Letters, Vol. 115, No. 20, 207403, 2015.
doi:10.1103/PhysRevLett.115.207403 Google Scholar
25. Bahret, W. F., "The beginnings of stealth technology," IEEE Transactions on Aerospace and Electronic Systems, Vol. 29, No. 4, 1377-1385, 1993.
doi:10.1109/7.259548 Google Scholar
26. Park, M.-J., J. Choi, and S. S. Kim, "Wide bandwidth pyramidal absorbers of granular ferrite and carbonyl iron powders," IEEE Transactions on Magnetics, Vol. 36, No. 5, 3272-3274, 2000.
doi:10.1109/20.908766 Google Scholar
27. Li, M., S. Xiao, Y. Y. Bai, and B. Z. Wang, "An ultrathin and broadband radar absorber using resistive FSS," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 748-751, 2012. Google Scholar
28. Chaudhury, B. and S. Chaturvedi, "Study and optimization of plasma-based radar cross section reduction using three-dimensional computations," IEEE Transactions on Plasma Science, Vol. 37, No. 11, 2116-2127, 2009.
doi:10.1109/TPS.2009.2032331 Google Scholar
29. Luukkonen, O., F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, "A thin electromagnetic absorber for wide incidence angles and both polarizations," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 3119-3125, 2009.
doi:10.1109/TAP.2009.2028601 Google Scholar
30. Watts, C. M., X. Liu, and W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Advanced Materials, Vol. 24, No. 23, OP98-OP120, 2012. Google Scholar
31. Paquay, M., J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, "Thin AMC structure for radar cross-section reduction," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3630-3638, 2007.
doi:10.1109/TAP.2007.910306 Google Scholar
32. Simms, S. and V. Fusco, "Chessboard reflector for RCS reduction," Electronics Letters, Vol. 44, No. 4, 316-318, 2008.
doi:10.1049/el:20083368 Google Scholar
33. Zhao, Y., X. Cao, J. Gao, and W. Li, "Broadband radar absorbing material based on orthogonal arrangement of CSRR etched artificial magnetic conductor," Microwave and Optical Technology Letters, Vol. 56, No. 1, 158-161, 2014.
doi:10.1002/mop.28033 Google Scholar
34. Esmaeli, S. H. and S. H. Sedighy, "Wideband radar cross-section reduction by AMC," Electronics Letters, Vol. 52, No. 1, 70-71, 2015.
doi:10.1049/el.2015.3515 Google Scholar
35. Mighani, M. and G. Dadashzadeh, "Broadband RCS reduction using a novel double layer chessboard AMC surface," Electronics Letters, Vol. 52, No. 14, 1253-1255, 2016.
doi:10.1049/el.2016.1214 Google Scholar
36. Sun, H., C. Gu, X. Chen, Z. Li, L. Liu, B. Xu, and Z. Zhou, "Broadband and broad-angle polarization-independent metasurface for radar cross section reduction," Scientific Reports, Vol. 7, 40782, 2017.
doi:10.1038/srep40782 Google Scholar
37. Su, P., Y. Zhao, S. Jia, W. Shi, and H. Wang, "An ultra-wideband and polarization-independent metasurface for RCS reduction," Scientific Reports, Vol. 6, 20387, 2016.
doi:10.1038/srep20387 Google Scholar
38. Li, Q. Y., Y. C. Jiao, and G. Zhao, "A novel microstrip rectangular-patch/ring-combination reflectarray element and its application," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1119-1122, 2009.
doi:10.1109/LAWP.2009.2033620 Google Scholar
39. Chen, W., C. A. Balanis, and C. R. Birtcher, "Checkerboard EBG surfaces for wideband radar cross section reduction," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 6, 2636-2645, 2015.
doi:10.1109/TAP.2015.2414440 Google Scholar
40. Knott, E. F., Radar Cross Section Measurements, Springer, US, 1993.
doi:10.1007/978-1-4684-9904-9