1. Fink, M., "Time reversal of ultrasonic fields. I. Basic principles," IEEE Trans. Ultrason., Ferroelect., Freq. Control, Vol. 39, No. 5, 555-566, 1992.
doi:10.1109/58.156174 Google Scholar
2. Lerosey, G., J. De Rosny, A. Tourin, A. Derode, G. Montaldo, and M. Fink, "Time reversal of electromagnetic waves," Phys. Rev. Lett., Vol. 92, No. 19, 193904, 2004.
doi:10.1103/PhysRevLett.92.193904 Google Scholar
3. Mukherjee, S., A. Tamburrino, M. Haq, S. Udpa, and L. Udpa, "Far field microwave NDE of composite structures using time reversal mirror," NDT & E International, Vol. 93, 7-17, 2018.
doi:10.1016/j.ndteint.2017.09.008 Google Scholar
4. Tabar, L., A. Gad, L. H. Holmberg, U. Ljungquist, C. J. G. Fagerberg, L. Baldetorp, O. Gröntoft, B. Lundström, J. C.Manson, et al. "Reduction in mortality from breast cancer after mass screening with mammography: Randomised trial from the breast cancer screening working group of the swedish national board of health and welfare," The Lancet, Vol. 325, No. 8433, 829-832, 1985.
doi:10.1016/S0140-6736(85)92204-4 Google Scholar
5. Mettler, F. A., A. C. Upton, C. A. Kelsey, R. N. Ashby, R. D. Rosenberg, and M. N. Linver, "Benefits versus risks from mammography: A critical reasessment," Cancer, Vol. 77, No. 5, 903-909, 1996.
doi:10.1002/(SICI)1097-0142(19960301)77:5<903::AID-CNCR15>3.0.CO;2-7 Google Scholar
6. Dullum, J. R., E. C. Lewis, and J. A. Mayer, "Rates and correlates of discomfort associated with mammography," Radiology, Vol. 214, No. 2, 547-552, 2000.
doi:10.1148/radiology.214.2.r00fe23547 Google Scholar
7. Wust, P., B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, and P. M. Schlag, "Hyperthermia in combined treatment of cancer," The Lancet Oncology, Vol. 3, No. 8, 487-497, 2002.
doi:10.1016/S1470-2045(02)00818-5 Google Scholar
8. Kowalski, M., B. Behnia, A. G. Webb, and J.-M. Jin, "Optimization of electromagnetic phasedarrays for hyperthermia via magnetic resonance temperature estimation," IEEE Transactions on Biomedical Engineering, Vol. 49, No. 11, 1229-1241, 2002.
doi:10.1109/TBME.2002.804602 Google Scholar
9. Converse, M., E. J. Bond, S. C. Hagness, and B. D. van Veen, "Ultrawide-band microwave spacetime beamforming for hyperthermia treatment of breast cancer: A computational feasibility study," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1876-1889, 2004.
doi:10.1109/TMTT.2004.832012 Google Scholar
10. Converse, M., E. J. Bond, B. D. Veen, and C. Hagness, "A computational study of ultra-wideband versus narrowband microwave hyperthermia for breast cancer treatment," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 5, 2169-2180, 2006.
doi:10.1109/TMTT.2006.872790 Google Scholar
11. Bond, E. J., X. Li, S. C. Hagness, and B. D. van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, 1690-1705, 2003.
doi:10.1109/TAP.2003.815446 Google Scholar
12. Al Shehri, S. A., S. Khatun, A. B. Jantan, R. S. A. Raja Abdullah, R. Mahmud, and Z. Awang, "Experimental breast tumor detection using Nn-based UWB imaging," Progress In Electromagnetics Research, Vol. 111, 447-465, 2011.
doi:10.2528/PIER10110102 Google Scholar
13. O’Halloran, M., E. Jones, and M. Glavin, "Quasi-multistatic mist beamforming for the early detection of breast cancer," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 4, 830-840, 2010.
doi:10.1109/TBME.2009.2016392 Google Scholar
14. Henty, B. E. and D. D. Stancil, "Multipath-enabled super-resolution for RF and microwave communication using phase-conjugate arrays," Phys. Rev. Lett., Vol. 93, No. 24, 243904, 2004.
doi:10.1103/PhysRevLett.93.243904 Google Scholar
15. Yavuz, M. E. and F. L. Teixeira, "Full time-domain dort for ultrawideband electromagnetic fields in dispersive, random inhomogeneous media," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 8, 2305-2315, 2006.
doi:10.1109/TAP.2006.879196 Google Scholar
16. Akıncı, M. N., M. Çayören, and I. Akduman, "Near-field orthogonality sampling method for microwave imaging: Theory and experimental verification," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 8, 2489-2501, 2016.
doi:10.1109/TMTT.2016.2585488 Google Scholar
17. Roy Paladhi, P., A. Sinha, A. Tayebi, L. Udpa, and S. S. Udpa, "Improved backpropagation algorithms by exploiting data redundancy in limited-angle diffraction tomography," Progress In Electromagnetics Research B, Vol. 66, 1-13, 2016.
doi:10.2528/PIERB15120204 Google Scholar
18. Vargas, H. I., W. C. Dooley, R. A. Gardner, K. D. Gonzalez, R. Venegas, S. H. Heywang-Kobrunner, and A. J. Fenn, "Focused microwave phased array thermotherapy for ablation of early-stage breast cancer: Results of thermal dose escalation," Annals of Surgical Oncology, Vol. 11, No. 2, 139-146, 2004.
doi:10.1245/ASO.2004.03.059 Google Scholar
19. Stang, J., M. Haynes, P. Carson, and M. Moghaddam, "A preclinical system prototype for focused microwave thermal therapy of the breast," IEEE Transactions on Biomedical Engineering, Vol. 59, No. 9, 2431-2438, 2012.
doi:10.1109/TBME.2012.2199492 Google Scholar
20. Pettinelli, E., A. Di Matteo, E. Mattei, L. Crocco, F. Soldovieri, J. D. Redman, and A. P. Annan, "GPR response from buried pipes: Measurement on field site and tomographic reconstructions," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 8, 2639-2645, 2009.
doi:10.1109/TGRS.2009.2018301 Google Scholar
21. Thomas, J.-L. and M. A. Fink, "Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: Application to transskull therapy," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 43, No. 6, 1122-1129, 1996.
doi:10.1109/58.542055 Google Scholar
22. De Rosny, J., G. Lerosey, and M. Fink, "Theory of electromagnetic time-reversal mirrors," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 10, 3139-3149, 2010.
doi:10.1109/TAP.2010.2052567 Google Scholar
23. Yavuz, M. E. and F. L. Teixeira, "Ultrawideband microwave sensing and imaging using time-reversal techniques: A review," Remote Sensing, Vol. 1, No. 3, 466-495, 2009.
doi:10.3390/rs1030466 Google Scholar
24. Fink, M., D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J.-L. Thomas, and F. Wu, "Time-reversed acoustics," Rep. Prog. Phys., Vol. 63, No. 12, 1933, 2000.
doi:10.1088/0034-4885/63/12/202 Google Scholar
25. Leopold, K. A., M. Dewhirst, T. Samulski, J. Harrelson, J. A. Tucker, S. L. George, R. K. Dodge, W. Grant, S. Clegg, L. R. Prosnitz, et al. "Relationships among tumor temperature, treatment time, and histopathological outcome using preoperative hyperthermia with radiation in soft tissue sarcomas," International Journal of Radiation Oncology Biology Physics, Vol. 22, No. 5, 989-998, 1992.
doi:10.1016/0360-3016(92)90798-M Google Scholar
26. Zhai, H., S. Sha, V. K. Shenoy, S. Jung, M. Lu, K. Min, S. Lee, and D. S. Ha, "An electronic circuit system for time-reversal of ultra-wideband short impulses based on frequency-domain approach," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 1, 74-86, 2010.
doi:10.1109/TMTT.2009.2035883 Google Scholar
27. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar
28. Klauenberg, B. J. and D. Miklavcic, Radio Frequency Radiation Dosimetry and Its Relationship to the Biological Effects of Electromagnetic Fields, Vol. 82, Springer Science & Business Media, 2012.
29. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, No. 20, 6093, 2007.
doi:10.1088/0031-9155/52/20/002 Google Scholar
30. Chaudhary, S. S., R. K. Mishra, A. Swarup, and J. M. Thomas, "Dielectric properties of normal & malignant human breast tissues at radiowave & microwave frequencies," Indian Journal of Biochemistry & Biophysics, Vol. 21, No. 1, 76-79, 1984. Google Scholar
31. Prada, C., S. Manneville, D. Spoliansky, and M. Fink, "Decomposition of the time reversal operator: Detection and selective focusing on two scatterers," The Journal of the Acoustical Society of America, Vol. 99, No. 4, 2067-2076, 1996.
doi:10.1121/1.415393 Google Scholar
32. Lynch, S. P., X. Lei, M. Chavez-MacGregor, L. Hsu, F. Meric-Bernstam, T. A. Buchholz, A. Zhang, G. N. Hortobagyi, V. Valero, and A. M. Gonzalez-Angulo, "Multifocality and multicentricity in breast cancer and survival outcomes," Annals of Oncology, Vol. 23, No. 12, 3063-3069, 2012.
doi:10.1093/annonc/mds136 Google Scholar
33. Esserman, L. J., D. Wolverton, and N. Hylton, "Integration of breast imaging into cancer management," Current Oncology Reports, Vol. 2, No. 6, 572-581, 2000.
doi:10.1007/s11912-000-0112-y Google Scholar
34. Mukherjee, S., A. Tamburrino, L. Udpa, and S. Udpa, "Nde of composite structures using microwave time reversal imaging," 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation, Vol. 1706, 100002, AIP Publishing, 2016. Google Scholar
35. Mukherjee, S., L. Udpa, S. Udpa, and E. J. Rothwell, "Target localization using microwave time-reversal mirror in reflection mode," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 2, 820-828, 2017.
doi:10.1109/TAP.2016.2627011 Google Scholar
36. Mukherjee, S., L. Udpa, Y. Deng, P. Chahal, and E. J. Rothwell, "Design of a microwave time reversal mirror for imaging applications," Progress In Electromagnetics Research C, Vol. 77, 155-165, 2017.
doi:10.2528/PIERC17051805 Google Scholar
37. Lazebnik, M., E. L. Madsen, G. R. Frank, and S. C. Hagness, "Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications," Physics in Medicine and Biology, Vol. 50, No. 18, 4245, 2005.
doi:10.1088/0031-9155/50/18/001 Google Scholar
38. Kosmas, P. and C. M. Rappaport, "Time reversal with the FDTD method for microwave breast cancer detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 7, 2317-2323, July 2005.
doi:10.1109/TMTT.2005.850444 Google Scholar
39. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array experimental results," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 6, 1692-1704, 2009.
doi:10.1109/TAP.2009.2019856 Google Scholar
40. Zhurbenko, V., "Challenges in the design of microwave imaging systems for breast cancer detection," Advances in Electrical and Computer Engineering, Vol. 11, No. 1, 91-96, 2011.
doi:10.4316/AECE.2011.01015 Google Scholar