1. Shrividya, G. and S. H. Bharathi, "Application of compressed sensing on magnetic resonance imaging: A brief survey," IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology, 2037-2041, 2017.
2. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582
3. Badenska, A. and L. Blaszczyk, "Compressed sensing for real measurements of quaternion signals," Journal of the Franklin Institute, Vol. 354, No. 13, 5753-5769, 2017.
doi:10.1016/j.jfranklin.2017.06.004
4. Candes, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731
5. Lang, C., H. Li, G. Li, and X. Zhao, "Combined sparse representation based on curvelet transform and local DCT for multi-layered image compression," IEEE International Conference on Communication Software and Networks, Vol. 220, No. 6, 316-320, 2011.
6. Candes, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on Information Theory, Vol. 52, No. 2, 489-509, 2006.
doi:10.1109/TIT.2005.862083
7. Tropp, J. A. and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Transactions on Information Theory, Vol. 53, No. 12, 4655-4666, 2007.
doi:10.1109/TIT.2007.909108
8. Jian, W., K. Seokbeop, and S. Byonghyo, "Generalized orthogonal matching pursuit," IEEE Transactions on Signal Processing, Vol. 60, No. 12, 6202-6216, 2012.
doi:10.1109/TSP.2012.2218810
9. Needell, D. and J. A. Tropp, "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples," Applied & Computational Harmonic Analysis, Vol. 26, No. 3, 301-321, 2009.
doi:10.1016/j.acha.2008.07.002
10. Dai, W. and O. Milenkovic, "Subspace pursuit for compressive sensing signal reconstruction," IEEE Transactions on Information Theory, Vol. 55, No. 5, 2230-2249, 2009.
doi:10.1109/TIT.2009.2016006
11. Chen, S. S., D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM Review, Vol. 43, No. 1, 129-159, 2001.
doi:10.1137/S003614450037906X
12. Zhai, Y., J. Gan, Y. Xu, and J. Zeng, "Fast sparse representation for Finger-Knuckle-Print recognition based on smooth L0 norm," IEEE International Conference on Signal Processing, 1587-1591, 2013.
13. Xiao, J., C. R. Del-Blanco, C. Cuevas, and N. Garcıa, "Fast image decoding for block compressed sensing based encoding by using a modified smooth l0-norm," IEEE International Conference on Consumer Electronics, 234-236, 2016.
14. Wang, H., Q. Guo, G. Zhang, G. Li, and W. Xiang, "Thresholded smoothed 0 norm for accelerated sparse recovery," IEEE Communications Letters, Vol. 19, No. 6, 953-956, 2015.
doi:10.1109/LCOMM.2015.2416711
15. Ghalehjegh, S. H., M. Babaie-Zadeh, and C. Jutten, "Fast block-sparse decomposition based on SL0," International Conference on Latent Variable Analysis and Signal Separation, 426-433, 2010.
doi:10.1007/978-3-642-15995-4_53
16. Zhao, R., W. Lin, L. Hao, and A. H. Shaohai, "Reconstruction algorithm for compressive sensing based on smoothed l0 norm and revised newton method," Journal of Computer-Aided Design & Computer Graphics, Vol. 24, No. 4, 478-484, 2012.
17. Ye, X., W. P. Zhu, A. Zhang, and J. Yan, "Sparse channel estimation of MIMO-OFDM systems with unconstrained smoothed l0-norm-regularized least squares compressed sensing," Eurasip Journal on Wireless Communications & Networking, Vol. 2013, No. 1, 282, 2013.
doi:10.1186/1687-1499-2013-282
18. Ye, X. and W. P. Zhu, "Sparse channel estimation of pulse-shaping multiple-input-multipleoutput orthogonal frequency division multiplexing systems with an approximate gradient l2-l0 reconstruction algorithm," Iet Communications, Vol. 8, No. 7, 1124-1131, 2014.
doi:10.1049/iet-com.2013.0571
19. Soussen, C., J. Idier, J. Duan, and D. Brie, "Homotopy based algorithms for l0-regularized leastsquares," IEEE Transactions on Signal Processing, Vol. 63, No. 13, 3301-3316, 2015.
doi:10.1109/TSP.2015.2421476
20. Yin, W., D. Goldfarb, and S. Osher, "The total variation regularized Lsp1 model for multiscale decomposition," Siam Journal on Multiscale Modeling & Simulation, Vol. 6, No. 1, 190-211, 2013.
doi:10.1137/060663027
21. Pant, J. K., W. S. Lu, and A. Antoniou, "New improved algorithms for compressive sensing based on p norm," IEEE Transactions on Circuits & Systems II Express Briefs, Vol. 61, No. 3, 198-202, 2014.
doi:10.1109/TCSII.2013.2296133
22. Malek-Mohammadi, M., A. Koochakzadeh, M. Babaie-Zadeh, M. Jansson, and C. R. Rojas, "Successive concave sparsity approximation for compressed sensing," IEEE Transactions on Signal Processing, Vol. 64, No. 21, 5657-5671, 2016.
doi:10.1109/TSP.2016.2585096
23. Li, S., H. Yin, and L. Fang, "Remote sensing image fusion via sparse representations over learned dictionaries," IEEE Transactions on Geoscience & Remote Sensing, Vol. 51, No. 9, 4779-4789, 2013.
doi:10.1109/TGRS.2012.2230332
24. Zhang, J., D. Zhao, F. Jiang, and W. Gao, "Structural group sparse representation for image compressive sensing recovery," IEEE International Conference on Data Compression, 331-340, 2013.
25. Hawes, M. B. and W. Liu, "Robust sparse antenna array design via compressive sensing," International Conference on Digital Signal Processing, 1-5, 2013.
26. Lu, Z. and Y. Zhang, "Penalty decomposition methods for L0-norm minimization," Mathematics, 2010.
27. Shi, Z., "A weighted block dictionary learning algorithm for classification," Mathematical Problems in Engineering, Vol. 2016, 2016.
28. Candes, E. J., M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted L1 minimization," Journal of Fourier Analysis & Applications, Vol. 14, No. 5–6, 877-905, 2008.
doi:10.1007/s00041-008-9045-x
29. Rudin, L. I., S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," Physica D Nonlinear Phenomena, Vol. 60, No. 1-4, 259-268, 1992.
doi:10.1016/0167-2789(92)90242-F
30. Wen, F., Y. Yang, P. Liu, R. Ying, and Y. Liu, "Efficient q minimization algorithms for compressive sensing based on proximity operator," Mathematics, 2016.