1. Shrividya, G. and S. H. Bharathi, "Application of compressed sensing on magnetic resonance imaging: A brief survey," IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology, 2037-2041, 2017. Google Scholar
2. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582 Google Scholar
3. Badenska, A. and L. Blaszczyk, "Compressed sensing for real measurements of quaternion signals," Journal of the Franklin Institute, Vol. 354, No. 13, 5753-5769, 2017.
doi:10.1016/j.jfranklin.2017.06.004 Google Scholar
4. Candes, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731 Google Scholar
5. Lang, C., H. Li, G. Li, and X. Zhao, "Combined sparse representation based on curvelet transform and local DCT for multi-layered image compression," IEEE International Conference on Communication Software and Networks, Vol. 220, No. 6, 316-320, 2011. Google Scholar
6. Candes, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on Information Theory, Vol. 52, No. 2, 489-509, 2006.
doi:10.1109/TIT.2005.862083 Google Scholar
7. Tropp, J. A. and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Transactions on Information Theory, Vol. 53, No. 12, 4655-4666, 2007.
doi:10.1109/TIT.2007.909108 Google Scholar
8. Jian, W., K. Seokbeop, and S. Byonghyo, "Generalized orthogonal matching pursuit," IEEE Transactions on Signal Processing, Vol. 60, No. 12, 6202-6216, 2012.
doi:10.1109/TSP.2012.2218810 Google Scholar
9. Needell, D. and J. A. Tropp, "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples," Applied & Computational Harmonic Analysis, Vol. 26, No. 3, 301-321, 2009.
doi:10.1016/j.acha.2008.07.002 Google Scholar
10. Dai, W. and O. Milenkovic, "Subspace pursuit for compressive sensing signal reconstruction," IEEE Transactions on Information Theory, Vol. 55, No. 5, 2230-2249, 2009.
doi:10.1109/TIT.2009.2016006 Google Scholar
11. Chen, S. S., D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM Review, Vol. 43, No. 1, 129-159, 2001.
doi:10.1137/S003614450037906X Google Scholar
12. Zhai, Y., J. Gan, Y. Xu, and J. Zeng, "Fast sparse representation for Finger-Knuckle-Print recognition based on smooth L0 norm," IEEE International Conference on Signal Processing, 1587-1591, 2013. Google Scholar
13. Xiao, J., C. R. Del-Blanco, C. Cuevas, and N. Garcıa, "Fast image decoding for block compressed sensing based encoding by using a modified smooth l0-norm," IEEE International Conference on Consumer Electronics, 234-236, 2016. Google Scholar
14. Wang, H., Q. Guo, G. Zhang, G. Li, and W. Xiang, "Thresholded smoothed 0 norm for accelerated sparse recovery," IEEE Communications Letters, Vol. 19, No. 6, 953-956, 2015.
doi:10.1109/LCOMM.2015.2416711 Google Scholar
15. Ghalehjegh, S. H., M. Babaie-Zadeh, and C. Jutten, "Fast block-sparse decomposition based on SL0," International Conference on Latent Variable Analysis and Signal Separation, 426-433, 2010.
doi:10.1007/978-3-642-15995-4_53 Google Scholar
16. Zhao, R., W. Lin, L. Hao, and A. H. Shaohai, "Reconstruction algorithm for compressive sensing based on smoothed l0 norm and revised newton method," Journal of Computer-Aided Design & Computer Graphics, Vol. 24, No. 4, 478-484, 2012. Google Scholar
17. Ye, X., W. P. Zhu, A. Zhang, and J. Yan, "Sparse channel estimation of MIMO-OFDM systems with unconstrained smoothed l0-norm-regularized least squares compressed sensing," Eurasip Journal on Wireless Communications & Networking, Vol. 2013, No. 1, 282, 2013.
doi:10.1186/1687-1499-2013-282 Google Scholar
18. Ye, X. and W. P. Zhu, "Sparse channel estimation of pulse-shaping multiple-input-multipleoutput orthogonal frequency division multiplexing systems with an approximate gradient l2-l0 reconstruction algorithm," Iet Communications, Vol. 8, No. 7, 1124-1131, 2014.
doi:10.1049/iet-com.2013.0571 Google Scholar
19. Soussen, C., J. Idier, J. Duan, and D. Brie, "Homotopy based algorithms for l0-regularized leastsquares," IEEE Transactions on Signal Processing, Vol. 63, No. 13, 3301-3316, 2015.
doi:10.1109/TSP.2015.2421476 Google Scholar
20. Yin, W., D. Goldfarb, and S. Osher, "The total variation regularized Lsp1 model for multiscale decomposition," Siam Journal on Multiscale Modeling & Simulation, Vol. 6, No. 1, 190-211, 2013.
doi:10.1137/060663027 Google Scholar
21. Pant, J. K., W. S. Lu, and A. Antoniou, "New improved algorithms for compressive sensing based on p norm," IEEE Transactions on Circuits & Systems II Express Briefs, Vol. 61, No. 3, 198-202, 2014.
doi:10.1109/TCSII.2013.2296133 Google Scholar
22. Malek-Mohammadi, M., A. Koochakzadeh, M. Babaie-Zadeh, M. Jansson, and C. R. Rojas, "Successive concave sparsity approximation for compressed sensing," IEEE Transactions on Signal Processing, Vol. 64, No. 21, 5657-5671, 2016.
doi:10.1109/TSP.2016.2585096 Google Scholar
23. Li, S., H. Yin, and L. Fang, "Remote sensing image fusion via sparse representations over learned dictionaries," IEEE Transactions on Geoscience & Remote Sensing, Vol. 51, No. 9, 4779-4789, 2013.
doi:10.1109/TGRS.2012.2230332 Google Scholar
24. Zhang, J., D. Zhao, F. Jiang, and W. Gao, "Structural group sparse representation for image compressive sensing recovery," IEEE International Conference on Data Compression, 331-340, 2013. Google Scholar
25. Hawes, M. B. and W. Liu, "Robust sparse antenna array design via compressive sensing," International Conference on Digital Signal Processing, 1-5, 2013. Google Scholar
26. Lu, Z. and Y. Zhang, "Penalty decomposition methods for L0-norm minimization," Mathematics, 2010. Google Scholar
27. Shi, Z., "A weighted block dictionary learning algorithm for classification," Mathematical Problems in Engineering, Vol. 2016, 2016. Google Scholar
28. Candes, E. J., M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted L1 minimization," Journal of Fourier Analysis & Applications, Vol. 14, No. 5–6, 877-905, 2008.
doi:10.1007/s00041-008-9045-x Google Scholar
29. Rudin, L. I., S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," Physica D Nonlinear Phenomena, Vol. 60, No. 1-4, 259-268, 1992.
doi:10.1016/0167-2789(92)90242-F Google Scholar
30. Wen, F., Y. Yang, P. Liu, R. Ying, and Y. Liu, "Efficient q minimization algorithms for compressive sensing based on proximity operator," Mathematics, 2016. Google Scholar