Vol. 90
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-02-11
A New Fast and Accurate Compressive Sensing Technique for Magnetic Resonance Imaging
By
Progress In Electromagnetics Research C, Vol. 90, 51-63, 2019
Abstract
In this paper, the main problem to be solved is how to achieve magnetic resonance imaging (MRI) accurately and quickly. Previous work has shown that compressive sensing (CS) technology can reconstruct a magnetic resonance (MR) image from only a small number of samples, which significantly reduces MR scanning time. Based on this, an algorithm to improve the accuracy of MRI, called regularized weighting Composite Gaussian smoothed l0-norm minimization (RWCGSL0), is proposed in this paper. Different from previous methods, our algorithm has three influential contributions: (1) a new smoothed Composite Gaussian function (CGF) is proposed to be closer to the l0-norm; (2) a new weighting function is proposed; (3) a new l0 regularized objective function framework is constructed. Furthermore, the optimal solution of this objective function is obtained by penalty decomposition (PD)method. It is experimentally shown that the proposed algorithm outperforms other state-of-the-art CS algorithms in the reconstruction of MR images.
Citation
Huihui Yue, and Xiangjun Yin, "A New Fast and Accurate Compressive Sensing Technique for Magnetic Resonance Imaging," Progress In Electromagnetics Research C, Vol. 90, 51-63, 2019.
doi:10.2528/PIERC18101702
References

1. Shrividya, G. and S. H. Bharathi, "Application of compressed sensing on magnetic resonance imaging: A brief survey," IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology, 2037-2041, 2017.

2. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

3. Badenska, A. and L. Blaszczyk, "Compressed sensing for real measurements of quaternion signals," Journal of the Franklin Institute, Vol. 354, No. 13, 5753-5769, 2017.
doi:10.1016/j.jfranklin.2017.06.004

4. Candes, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731

5. Lang, C., H. Li, G. Li, and X. Zhao, "Combined sparse representation based on curvelet transform and local DCT for multi-layered image compression," IEEE International Conference on Communication Software and Networks, Vol. 220, No. 6, 316-320, 2011.

6. Candes, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on Information Theory, Vol. 52, No. 2, 489-509, 2006.
doi:10.1109/TIT.2005.862083

7. Tropp, J. A. and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Transactions on Information Theory, Vol. 53, No. 12, 4655-4666, 2007.
doi:10.1109/TIT.2007.909108

8. Jian, W., K. Seokbeop, and S. Byonghyo, "Generalized orthogonal matching pursuit," IEEE Transactions on Signal Processing, Vol. 60, No. 12, 6202-6216, 2012.
doi:10.1109/TSP.2012.2218810

9. Needell, D. and J. A. Tropp, "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples," Applied & Computational Harmonic Analysis, Vol. 26, No. 3, 301-321, 2009.
doi:10.1016/j.acha.2008.07.002

10. Dai, W. and O. Milenkovic, "Subspace pursuit for compressive sensing signal reconstruction," IEEE Transactions on Information Theory, Vol. 55, No. 5, 2230-2249, 2009.
doi:10.1109/TIT.2009.2016006

11. Chen, S. S., D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM Review, Vol. 43, No. 1, 129-159, 2001.
doi:10.1137/S003614450037906X

12. Zhai, Y., J. Gan, Y. Xu, and J. Zeng, "Fast sparse representation for Finger-Knuckle-Print recognition based on smooth L0 norm," IEEE International Conference on Signal Processing, 1587-1591, 2013.

13. Xiao, J., C. R. Del-Blanco, C. Cuevas, and N. Garcıa, "Fast image decoding for block compressed sensing based encoding by using a modified smooth l0-norm," IEEE International Conference on Consumer Electronics, 234-236, 2016.

14. Wang, H., Q. Guo, G. Zhang, G. Li, and W. Xiang, "Thresholded smoothed 0 norm for accelerated sparse recovery," IEEE Communications Letters, Vol. 19, No. 6, 953-956, 2015.
doi:10.1109/LCOMM.2015.2416711

15. Ghalehjegh, S. H., M. Babaie-Zadeh, and C. Jutten, "Fast block-sparse decomposition based on SL0," International Conference on Latent Variable Analysis and Signal Separation, 426-433, 2010.
doi:10.1007/978-3-642-15995-4_53

16. Zhao, R., W. Lin, L. Hao, and A. H. Shaohai, "Reconstruction algorithm for compressive sensing based on smoothed l0 norm and revised newton method," Journal of Computer-Aided Design & Computer Graphics, Vol. 24, No. 4, 478-484, 2012.

17. Ye, X., W. P. Zhu, A. Zhang, and J. Yan, "Sparse channel estimation of MIMO-OFDM systems with unconstrained smoothed l0-norm-regularized least squares compressed sensing," Eurasip Journal on Wireless Communications & Networking, Vol. 2013, No. 1, 282, 2013.
doi:10.1186/1687-1499-2013-282

18. Ye, X. and W. P. Zhu, "Sparse channel estimation of pulse-shaping multiple-input-multipleoutput orthogonal frequency division multiplexing systems with an approximate gradient l2-l0 reconstruction algorithm," Iet Communications, Vol. 8, No. 7, 1124-1131, 2014.
doi:10.1049/iet-com.2013.0571

19. Soussen, C., J. Idier, J. Duan, and D. Brie, "Homotopy based algorithms for l0-regularized leastsquares," IEEE Transactions on Signal Processing, Vol. 63, No. 13, 3301-3316, 2015.
doi:10.1109/TSP.2015.2421476

20. Yin, W., D. Goldfarb, and S. Osher, "The total variation regularized Lsp1 model for multiscale decomposition," Siam Journal on Multiscale Modeling & Simulation, Vol. 6, No. 1, 190-211, 2013.
doi:10.1137/060663027

21. Pant, J. K., W. S. Lu, and A. Antoniou, "New improved algorithms for compressive sensing based on p norm," IEEE Transactions on Circuits & Systems II Express Briefs, Vol. 61, No. 3, 198-202, 2014.
doi:10.1109/TCSII.2013.2296133

22. Malek-Mohammadi, M., A. Koochakzadeh, M. Babaie-Zadeh, M. Jansson, and C. R. Rojas, "Successive concave sparsity approximation for compressed sensing," IEEE Transactions on Signal Processing, Vol. 64, No. 21, 5657-5671, 2016.
doi:10.1109/TSP.2016.2585096

23. Li, S., H. Yin, and L. Fang, "Remote sensing image fusion via sparse representations over learned dictionaries," IEEE Transactions on Geoscience & Remote Sensing, Vol. 51, No. 9, 4779-4789, 2013.
doi:10.1109/TGRS.2012.2230332

24. Zhang, J., D. Zhao, F. Jiang, and W. Gao, "Structural group sparse representation for image compressive sensing recovery," IEEE International Conference on Data Compression, 331-340, 2013.

25. Hawes, M. B. and W. Liu, "Robust sparse antenna array design via compressive sensing," International Conference on Digital Signal Processing, 1-5, 2013.

26. Lu, Z. and Y. Zhang, "Penalty decomposition methods for L0-norm minimization," Mathematics, 2010.

27. Shi, Z., "A weighted block dictionary learning algorithm for classification," Mathematical Problems in Engineering, Vol. 2016, 2016.

28. Candes, E. J., M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted L1 minimization," Journal of Fourier Analysis & Applications, Vol. 14, No. 5–6, 877-905, 2008.
doi:10.1007/s00041-008-9045-x

29. Rudin, L. I., S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," Physica D Nonlinear Phenomena, Vol. 60, No. 1-4, 259-268, 1992.
doi:10.1016/0167-2789(92)90242-F

30. Wen, F., Y. Yang, P. Liu, R. Ying, and Y. Liu, "Efficient q minimization algorithms for compressive sensing based on proximity operator," Mathematics, 2016.