Vol. 82
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-02-19
Design of Compact Bend Triangular Resonator for Wide Band Application
By
Progress In Electromagnetics Research Letters, Vol. 82, 1-8, 2019
Abstract
The current wireless technology demands wide frequency operation, like WLAN 5GHz band, which requires 12.75% frequency bandwidth. In this paper, a unit cell metamaterial structure is proposed, which consists of 4 compact bend triangular resonators (CBTRs) that offer wideband frequency rejection. The single negative metamaterial based resonators give band rejection response, but it is generally bandwidth limited. With the proposed unit cell, rejection bandwidth of 16.78% for rejection level of -12 dB is achieved. It can be further increased by increasing the order of unit cells. The proposed unit cell structure is analyzed for the resonant frequency of 5.5 GHz, and the design is suitable for the application where 15% or more rejection band is required.
Citation
Maruti Tamrakar, and Usha Kiran Kommuri, "Design of Compact Bend Triangular Resonator for Wide Band Application," Progress In Electromagnetics Research Letters, Vol. 82, 1-8, 2019.
doi:10.2528/PIERL18112807
References

1. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847

2. Smith, D. R. and N. Kroll, "Negative refractive index in left-handed materials," Phys. Rev. Letter., Vol. 85, No. 14, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

3. Cory, H. and A. Barger, "Surface wave propagation along a metamaterial slab," Microwave and Optical Technology Letters, Vol. 38, No. 5, 392-395, Sep. 5, 2003.
doi:10.1002/mop.11070

4. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, 4, Jan.–Feb. 1968.

5. Wartak, M. S., K. L. Tsakmakidis, and O. Hess, "Introduction to metamaterials," Physics in Canada, Vol. 67, No. 1, Jan.–Mar. 2011.

6. Falcone, F., T. Lopetegi, J. D. Baena, and R. Marques, "Effective negative-ε stopband microstrip lines based on complementary split ring resonator," IEEE Microwave and Wireless Component Letters, Vol. 14, No. 6, 280-282, Jun. 2004.
doi:10.1109/LMWC.2004.828029

7. Jegadeesan, S., J. Vijayakrishnan, N. Chandrasekar, and S. Gnanasundar, "Design of compact Ultra Wide Bandpass Filter (UWBPF) with metamaterial — Comparison between different CSRRs," 3rd International Conference on Signal Processing, Communication and Networking (ICSCN), 1-6, Chennai, 2015.

8. Habashi, A., J. Nourinia, and C. Ghobadi, "Mutual coupling reduction between very closely spaced patch antennas using low-profile Folded Split-Ring Resonators (FSRRs)," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 862-865, 2011.
doi:10.1109/LAWP.2011.2165931

9. Baena, J. D., et al., "Equivalent-circuit models for split-ring resonators and complementary splitring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1451-1461, Apr. 2005.
doi:10.1109/TMTT.2005.845211

10. Naskar, M. A., M. Tamrakar, and D. Thiripurasundari, "Compact ‘V’ shaped metamaterial based resonator for wide band rejection," 2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2), 88-91, Chennai, 2017.
doi:10.1109/ICNETS2.2017.8067904

11. Chen, X., et al., "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review, E, Statistical, Nonlinear, and Soft Matter Physics, Vol. 70, No. 1, Pt. 2, 016608, 2004.

12. Falcone, F., T. Lopetegi, J. D. Baena, R. Marques, F. Martin, and M. Sorolla, "Effective negative-/spl epsiv/ stopband microstrip lines based on complementary split ring resonators," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 6, 280-282, Jun. 2004.
doi:10.1109/LMWC.2004.828029

13. George, B., N. S. Bhuvana, and S. K. Menon, "Design of edge coupled open loop metamaterial filters," 2017 Progress In Electromagnetics Research Symposium — Spring (PIERS), 2483-2488, St. Petersburg, 2017.
doi:10.1109/PIERS.2017.8262169

14. Hammad, Y. T., M. A. Abdalla, and A. F. Daw, "A compact band stop filter with sharp stopband response using D-CRLH configuration," 12th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), 004-006, 2018.
doi:10.1109/MetaMaterials.2018.8534084

15. Abessolo, M. A. A., Y. Diallo, A. Jaoujal, A. Moussaoui, and N. Aknin, "Stop-band filter using a new metamaterial Complementary Split Triangle Resonators (CSTRs)," Applied Computational Electromagnetics Society Journal, Vol. 28, No. 4, 353-358, 2013.

16. Atallah, H. and E. Hamad, "Compact CSRRs-based metamaterial band stop filter with controlled rejection band," IEEE — New Paradigms in Electronics and Information Technologies (PEIT011) International Conference, Alexandria, Egypt, Oct. 2011.

17. Sassi, I., L. Talbi, and K. Hettak, "Compact multi-band filter based on multi-ring complementary split ring resonators," Progress In Electromagnetics Research C, Vol. 57, 127-135, 2015.
doi:10.2528/PIERC15041904