1. Harrington, R. F., Field Computation by Method of Moments, IEEE Press, 1992.
2. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Ant. Propag. Mag., Vol. 53, No. 3, 7-12, 1993.
doi:10.1109/74.250128 Google Scholar
3. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, 1997.
doi:10.1109/8.633855 Google Scholar
4. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, No. 5, 1225-1251, 1996.
doi:10.1029/96RS02504 Google Scholar
5. Burke, G. J., "Using model based parameter estimation to increase the efficiency of computing electromagnetic transfer functions," IEEE Trans. Mag., Vol. 25, No. 4, 2807-2809, 1988.
doi:10.1109/20.34291 Google Scholar
6. Newman, E. H., "Generation of wide band from the method of moments by interpolating the impedance matrix," IEEE Trans. Antennas Propag., Vol. 36, No. 12, 1820-1824, 1988.
doi:10.1109/8.14404 Google Scholar
7. Chao, T., Y. J. Xie, and Y. Y. Wang, "Fast solutions of wide-band RCS pattern of objects using MLFMM with the best uniform approximation," Journal of Electronics & Information Technology, Vol. 31, No. 11, 2772-2775, 2009. Google Scholar
8. Reddy, C. J., M. D. Deshpande, and C. R. Cockrell, "Fast RCS computation over a frequency band using method of moments in conjunction with asymptotic evaluation technique," IEEE Trans. Antennas Propag., Vol. 46, No. 8, 1229-1233, 1998.
doi:10.1109/8.718579 Google Scholar
9. Wang, X., S. X. Gong, and J. L. Guo, "Fast and accurate wide-band analysis of antennas mounted on conducting platform using AIM and asymptotic waveform evaluation technique," IEEE Trans. Antennas Propag., Vol. 59, No. 12, 4624-4633, 2011.
doi:10.1109/TAP.2011.2165495 Google Scholar
10. Nie, X. C., N. Yuan, L. W. Li, and Y. B. Gan, "Fast analysis of RCS over a frequency band using pre-corrected FFT/AIM and asymptotic waveform evaluation technique," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3526-3533, 2008.
doi:10.1109/TAP.2008.2005455 Google Scholar
11. Prakash, V. V. S. and R. Mittra, "Characteristic basis function method: A new technique for efficient solution of method of moments matrix equations," Microw. Opt. Technol. Lett., Vol. 36, No. 2, 95-100, 2003.
doi:10.1002/mop.10685 Google Scholar
12. Degiorgi, M., G. Tiberi, and A. Monorchio, "An SVD-based method for analyzing electromagnetic scattering from plates and faceted bodies using physical optics bases," IEEE Antennas and Propagation Society International Symposium, 147-150, Jul. 2005. Google Scholar
13. Tanaka, T., Y. Inasawa, Y. Nishioka, and H. Miyashita, "Improved primary characteristic basic function method for monostatic radar cross section analysis of specific coordinate plane," IEICE Transactions on Electronics, Vol. E99-C, No. 1, 28-35, 2016.
doi:10.1587/transele.E99.C.28 Google Scholar
14. Tanaka, T., Y. Inasawa, Y. Nishioka, and H. Miyashita, "Improved primary-characteristic basis function method considering higher-order multiple scattering," IEICE Transactions on Electronics, Vol. E100-C, No. 1, 45-51, 2017.
doi:10.1587/transele.E100.C.45 Google Scholar
15. Tanaka, T., Y. Inasawa, Y. Nishioka, and H. Miyashita, "Accuracy improvement of characteristic basis function method by using multilevel approach," IEICE Transactions on Electronics, Vol. E101-C, No. 2, 96-103, 2018.
doi:10.1587/transele.E101.C.96 Google Scholar
16. Li, C. L., Y. F. Sun, and G. H. Wang, "Merged characteristic basis function method for analysis of electromagnetic scattering characteristics from conducting targets," Progress In Electromagnetics Research Letters, Vol. 69, 15-21, 2017.
doi:10.2528/PIERL17031501 Google Scholar
17. Maaskant, R., R. Mittra, and A. G. Tijhuis, "Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3440-3451, 2008.
doi:10.1109/TAP.2008.2005471 Google Scholar
18. Wang, X., D. H. Werner, and J. P. Turpin, "Investigation of scattering properties of large-scale aperiodic tilings using a combination of the characteristic basis function and adaptive integral methods," IEEE Trans. Antennas Propag., Vol. 61, No. 6, 3149-3160, 2013.
doi:10.1109/TAP.2013.2250474 Google Scholar
19. Degiorgi, M., G. Tiberi, and A. Monorchio, "Solution of wide band scattering problems using the characteristic basis function method," IET Microwaves Antennas and Propagation, Vol. 6, No. 1, 60-66, 2012.
doi:10.1049/iet-map.2011.0309 Google Scholar
20. Nie, W. Y. and Z. G. Wang, "Solution for wide band scattering problems by using the improved ultra-wide band characteristic basis function method," Progress In Electromagnetics Research Letters, Vol. 58, 37-43, 2016.
doi:10.2528/PIERL15080801 Google Scholar
21. Nie, W. Y. and Z. G. Wang, "Analysis of wide band scattering from objects using the adaptive improved ultra-wide band characteristic basis functions," Progress In Electromagnetics Research Letters, Vol. 60, 45-51, 2016.
doi:10.2528/PIERL16033003 Google Scholar
22. Koc, S. N. and A. Köksal, "Wideband analysis of planar scalable antennas and PEC bodies using CBFM," Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 24, 1652-1662, 2016.
doi:10.3906/elk-1401-48 Google Scholar
23. Nie, W. Y. and Z. G. Wang, "Efficient computation of wideband RCS using singular value decomposition enhanced improved ultrawideband characteristic basis function method," International Journal of Antennas and Propagation, Vol. 2016, Article ID 6367205, 1–6, 2016. Google Scholar
24. Yeo, J., S. Köksoy, V. V. S. Prakash, and R. Mittra, "Efficient generation of method of moments matrices using the characteristic function method," IEEE Trans. Antennas Propag., Vol. 52, No. 12, 3405-3410, 2004.
doi:10.1109/TAP.2004.836418 Google Scholar