1. Lahiri, I. and W. Choi, "Carbon nanostructures in lithium ion batteries: Past, present, and future," Critical Reviews in Solid State and Materials Sciences, Vol. 38, No. 2, 128-166, 2013.
doi:10.1080/10408436.2012.729765
2. Xia, T., et al. "Facile complex-coprecipitation synthesis of mesoporous Fe3O4 nanocages and their high lithium storage capacity as anode material for lithium-ion batteries," Electrochimica Acta, Vol. 160, 114-122, 2015.
doi:10.1016/j.electacta.2015.02.017
3. Liu, J., et al. "A flexible alkaline rechargeable Ni/Fe battery based on graphene foam/carbon nanotubes hybrid film," Nano Letters, Vol. 14, No. 12, 7180-7187, 2014.
doi:10.1021/nl503852m
4. Kozlovskiy, A., et al. "Mossbauer research of Fe/Co nanotubes based on track membranes," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 381, 103-109, 2016.
doi:10.1016/j.nimb.2016.05.026
5. Wu, Q., et al. "Microwave absorption and mechanical properties of cross-scale SiC composites," Composites Part B: Engineering, Vol. 155, 83-91, 2018.
doi:10.1016/j.compositesb.2018.08.020
6. Shanbedi, M., et al. "Effect of magnetic field on thermo-physical and hydrodynamic properties of different metals-decorated multi-walled carbon nanotubes-based water coolants in a closed conduit," Journal of Thermal Analysis and Calorimetry, Vol. 131, No. 2, 1089-1106, 2018.
doi:10.1007/s10973-017-6628-2
7. Zakaria, M. R., et al. "Comparative study of graphene nanoparticle and multiwall carbon nanotube filled epoxy nanocomposites based on mechanical, thermal and dielectric properties," Composites Part B: Engineering, Vol. 119, 57-66, 2017.
doi:10.1016/j.compositesb.2017.03.023
8. Lobiak, E. V., et al. "Structure and electrochemical properties of carbon nanotubes synthesized with catalysts obtained by decomposition of Co, Ni, and Fe polyoxomolybdates supported by MgO," Journal of Structural Chemistry, Vol. 59, No. 4, 786-792, 2018.
doi:10.1134/S0022476618040066
9. Cheng, H.-M., C. Liu, and P.-X. Hou, "Field emission from carbon nanotubes," Nanomaterials Handbook, 2nd Edition, 255-272, CRC Press, 2017.
10. Shirvanimoghaddam, K., et al. "Carbon fiber reinforced metal matrix composites: Fabrication processes and properties," Composites Part A: Applied Science and Manufacturing, Vol. 92, 70-96, 2017.
doi:10.1016/j.compositesa.2016.10.032
11. Rusakov, V. S., et al. "A Mössbauer study of iron and iron-cobalt nanotubes in polymer ion-track membranes," Moscow University Physics Bulletin, Vol. 71, No. 2, 193-201, 2016.
doi:10.3103/S0027134916020090
12. Chen, C. and X. Wang, "Adsorption of Ni (II) from aqueous solution using oxidized multiwall carbon nanotubes," Industrial & Engineering Chemistry Research, Vol. 45, No. 26, 9144-9149, 2006.
doi:10.1021/ie060791z
13. Kadyrzhanov, K. K., V. S. Rusakov, A. L. Kozlovskiy, M. V. Zdorovets, E. Y. Kaniukov, A. E. Shumskaya, I. E. Kenzhina, and M. S. Fadeev, "Structural and magnetic studies of Fe100-X Cox nanotubes obtained by template method," Progress In Electromagnetics Research C, Vol. 82, 77-88, 2018.
doi:10.2528/PIERC17120501
14. Abukhadra, M. R., et al. "Superior removal of Co 2+, Cu 2+ and Zn 2+ contaminants from water utilizing spongy Ni/Fe carbonate-fluorapatite; preparation, application and mechanism," Ecotoxicology and Environmental Safety, Vol. 157, 358-368, 2018.
doi:10.1016/j.ecoenv.2018.03.085
15. Shumskaya, A. E., E. Y. Kaniukov, A. L. Kozlovskiy, D. I. Shlimas, M. V. Zdorovets, M. A. Ibragimova, V. S. Rusakov, and K. K. Kadyrzhanov, "Template synthesis and magnetic characterization of FeNi nanotubes," Progress In Electromagnetics Research C, Vol. 75, 23-30, 2017.
doi:10.2528/PIERC17030606
16. Korolkov, I. V., et al. "Immobilization of carborane derivatives on Ni/Fe nanotubes for BNCT," Journal of Nanoparticle Research, Vol. 20, No. 9, 240, 2018.
doi:10.1007/s11051-018-4346-8
17. Sellmyer, D. J., M. Zheng, and R. Skomski, "Magnetism of Fe, Co and Ni nanowires in self-assembled arrays," Journal of Physics: Condensed Matter, Vol. 13, No. 25, R433, 2001.
doi:10.1088/0953-8984/13/25/201
17. Paulo, V. I. M., et al. "Magnetization curves of electrodeposited Ni, Fe and Co nanotubes," Materials Letters, Vol. 223, 78-81, 2018.
doi:10.1016/j.matlet.2018.04.025
19. Taberna, P.-L., et al. "High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications," Nature Materials, Vol. 5, No. 7, 567, 2006.
doi:10.1038/nmat1672
20. Kozlovskiy, A. and M. Zdorovets, "Study of the applicability of directional modification of nanostructures to improve the efficiency of their performance as the anode material of lithiumion batteries," Materials Research Express, Vol. 6, No. 7, 075066, 2019.
doi:10.1088/2053-1591/ab1983
21. Kozlovskiy, A., et al. "Effect of irradiation with C 2+ and O 2+ ions on the structural and conductive characteristics of copper nanostructures," Materials Research Express, Vol. 6, No. 7, 075072, 2019.
doi:10.1088/2053-1591/ab18cf
22. Chen, Z., et al. "Carbon particles modified macroporous Si/Ni composite as an advanced anode material for lithium ion batteries," International Journal of Hydrogen Energy, Vol. 44, No. 2, 1078-1087, 2019.
doi:10.1016/j.ijhydene.2018.11.065
23. Li, Q., et al. "Porous nitrogen-doped carbon nanofibers assembled with nickel nanoparticles for lithium-sulfur batteries," Nanoscale, Vol. 11, No. 2, 647-655, 2019.
doi:10.1039/C8NR07220E
24. Shlimas, D. A., et al. "Study of the use of ionizing radiation to improve the efficiency of performance of nickel nanostructures as anodes of lithium-ion batteries," Materials Research Express, Vol. 6, No. 5, 055026, 2019.
doi:10.1088/2053-1591/ab043b
25. Lee, S. H., et al. "Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement," Nano Letters, Vol. 13, No. 9, 4249-4256, 2013.
doi:10.1021/nl401952h
26. Wang, J.-Z., et al. "Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries," Chemistry - A European Journal, Vol. 17, No. 2, 661-667, 2011.
doi:10.1002/chem.201001348
27. He, C., et al. "Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material," ACS Nano, Vol. 7, No. 5, 4459-4469, 2013.
doi:10.1021/nn401059h
28. Wang, F., et al. "Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning," Carbon, Vol. 134, 264-273, 2018.
doi:10.1016/j.carbon.2018.03.081
29. Torres, D., J. Pinilla, and I. Suelves, "Co-, Cu- and Fe-doped Ni/Al2O3 catalysts for the catalytic decomposition of methane into hydrogen and carbon nanofibers," Catalysts, Vol. 8, No. 8, 300, 2018.
doi:10.3390/catal8080300
30. Li, Y., et al. "Annealing effects on the microstructure, magnetism and microwave-absorption properties of Fe/TiO2 nanocomposites," Journal of Magnetism and Magnetic Materials, Vol. 471, 346-354, 2019.
doi:10.1016/j.jmmm.2018.09.101
31. Azab, A. A., E. E. Ateia, and S. A. Esmail, "Comparative study on the physical properties of transition metal-doped (Co, Ni, Fe, and Mn) ZnO nanoparticles," Applied Physics A, Vol. 124, No. 7, 469, 2018.
doi:10.1007/s00339-018-1871-3
32. Kurakhmedov, A. E., et al. "Asymmetrical track-etched membranes prepared by double-sided irradiation on the DC-60 cyclotron," Petroleum Chemistry, Vol. 57, No. 6, 489-497, 2017.
doi:10.1134/S0965544117060056
33. Kaniukov, E. Y., et al. "Evolution of the polyethylene terephthalate track membranes parameters at the etching process," Journal of Contemporary Physics (Armenian Academy of Sciences), Vol. 52, No. 2, 155-160, 2017.
doi:10.3103/S1068337217020098
34. Matsnev, M. E. and V. S. Rusakov, "SpectrRelax: An application for Mössbauer spectra modeling and fitting," AIP Conference Proceedings, Vol. 1489, No. 1, AIP, 2012.
35. Kozlovskiy, A., et al. "Study of Ni/Fe nanotube properties," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 365, 663-667, 2015.
doi:10.1016/j.nimb.2015.09.090