Vol. 81
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-06-03
Analytical Calculation of Magnetic Field Distribution in the Consequent-Pole Bearingless PM Motor with Rotor Eccentricity
By
Progress In Electromagnetics Research M, Vol. 81, 137-147, 2019
Abstract
In this paper, an analytical calculation of the magnetic field in a consequent-pole bearingless permanent magnet (PM) type motor with rotor eccentricity is proposed. The analytical method is based on the resolution of Laplace's and Poisson's equations. Due to the presence of consequent-pole, the general solution of the first-order for the vector potential distribution in the air-gap is presented considering the first harmonic. Here, the magnetic field distributions by the analytical method are compared with those obtained from finite element (FE) analyses. Then, the corresponding performances are quantitatively assessed by the finite-element method.
Citation
Libing Jing, Zhangxian Huang, and Jun Gong, "Analytical Calculation of Magnetic Field Distribution in the Consequent-Pole Bearingless PM Motor with Rotor Eccentricity," Progress In Electromagnetics Research M, Vol. 81, 137-147, 2019.
doi:10.2528/PIERM19031208
References

1. Chiba, A., D. T. Power, and M. A. Rahman, "Characteristics of a bearingless induction motor," IEEE Trans. Magn., Vol. 27, No. 6, 5199-5201, 1991.
doi:10.1109/20.278786

2. Ooshima, M., A. Chiba, T. Fukao, and M. A. Rahman, "Design and analysis of permanent magnet-type bearingless motors," IEEE Trans. Ind. Electro., Vol. 43, No. 2, 292-299, 1996.
doi:10.1109/41.491353

3. Ooshima, M., S. Miyazawa, and A. Chiba, "A rotor design of a permanent magnet-type bearingless motor considering demagnetization," IEEE Proc., Power Conversion Conf., 655-660, Nagaoka, 1997.

4. Qiu, Z. J., "Fundamental research on permanent-magnet type bearingless motors,", Nanjing Univ. Aeron and Astron., Nanjing, 2010.

5. Oshima, M., S. Miyazawa, and T. Deido, "Characteristics of a permanent magnet type bearingless motor," IEEE Trans. Ind. Appl., Vol. 32, No. 2, 363-370, 1996.
doi:10.1109/28.491485

6. Qiu, Z. J., Z. Q. Deng, X. L. Wang, and L. K. Meng, "The principle and implementation of a new-type consequent-pole bearingless permanent magnet motor," Proc. of the CSEE, Vol. 27, No. 33, 1-5, 2007.

7. Kim, U. and D. K. Lieu, "Magnetic field calculation in permanent magnet motors with rotor eccentricity: Without slotting effect," IEEE Trans. Magn., Vol. 34, No. 4, 2243-2252, Jul. 1998.
doi:10.1109/20.703862

8. Kim, U. and D. K. Lieu, "Magnetic field calculation in permanent magnet motors with rotor eccentricity: With slotting effect considered," IEEE Trans. Magn., Vol. 34, No. 4, 2253-2266, Jul. 1998.
doi:10.1109/20.703863

9. Kim, U. and D. K. Lieu, "Effects of magnetically induced vibration force in brushless permanent-magnet motors," IEEE Trans. Magn., Vol. 41, No. 6, 2164-2172, Jun. 2005.
doi:10.1109/TMAG.2005.847628

10. Rahideh, A. and T. Korakianitis, "Analytical open-circuit magnetic field distribution of slotless brushless permanent magnet machines with rotor eccentricity," IEEE Trans. Magn., Vol. 47, No. 12, 4791-4808, 2011.
doi:10.1109/TMAG.2011.2159987

11. Fu, J. J. and C. S. Zhu, "Subdomain model for predicting magnetic field in slotted surface mounted permanent magnet machines with rotor eccentricity," IEEE Trans. Magn., Vol. 48, No. 5, 1906-1917, 2012.
doi:10.1109/TMAG.2011.2178250

12. Li, C., Y. J. Zhang, and Z. J. Qiu, "Exact analytical model for the no-load air-gap magnetic field calculation in consequent-pole permanent magnet bearingless motor," Trans. China Electro. Society, Vol. 27, No. 11, 1-5, 2012.

13. Fu, W. B., H. He, and Z. K. Chen, "Mode analyses of quasi-rectangular waveguides by using PMOBG," Journal of Jishou University, Vol. 24, No. 4, 43-47, 2003.

14. Lubin, T., S. Mezani, and A. Rezzoug, "Exact analytical method for magnetic field computation in the air gap of cylindrical electrical machines considering slotting effects," IEEE Trans. Magn., Vol. 46, No. 4, 1092-1099, Apr. 2010.
doi:10.1109/TMAG.2009.2036257