1. Hersbach, H., "CMOD5 an improved geophysical model function for ERS C-band scatterometry," ECMWF Technical Memorandum, 395, Technical report, ECMWF, Jan. 2003.
2. Hersbach, H., "CMOD5.N a C-band geophysical model function for equivalent neutral wind," ECMWF Technical Memorandum, 554, Technical report, ECMWF, Apr. 2008.
3. Elyouncha, A., X. Neyt, A. Stoffelen, and J. Verspeek, "Assessment of the corrected CMOD6 GMF using scatterometer data," Proc. SPIE, Vol. 9638, No. 3, 11 pages, Oct. 2015.
4. Monaldo, F., C. Jackson, X. Li, and W. G. Pichel, "Preliminary evaluation of Sentinel-1A wind speed retrievals," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 9, No. 6, 2638-2642, 2016.
doi:10.1109/JSTARS.2015.2504324
5. La, T. V., A. Khenchaf, F. Comblet, and C. Nahum, "Exploitation of C-band Sentinel-1 images for high-resolution wind field retrieval in coastal zones (Iroise coast, France)," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 10, No. 12, 5458-5471, Dec. 2017.
doi:10.1109/JSTARS.2017.2746349
6. Mouche, A. and B. Chapron, "Global C-band Envisat, RADARSAT-2 and Sentinel-1 SAR measurements in copolarization and cross-polarization," J. Geophys. Res. Oceans, Vol. 120, 7195-7207, 2015, doi: 10.1002/2015JC011149.
doi:10.1002/2015JC011149
7. Lu, Y., B. Zhang, W. Perrie, A. A. Mouche, X. Li, and H. Wang, "A C-band geophysical model function for determining coastal wind speed using synthetic aperture radar," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 11, No. 7, 2417-2428, 2018.
doi:10.1109/JSTARS.2018.2836661
8. Miret, D., G. Soriano, and M. Saillard, "Rigorous simulations of microwave scattering from finite conductivity two-dimensional sea surfaces at low grazing angles," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 6, 3150-3158, Jun. 2014.
doi:10.1109/TGRS.2013.2271384
9. Hastings, F. D., J. B. Schneider, and S. L. Broschat, "A Monte-Carlo FDTD technique for rough surface scattering," IEEE Trans. Antennas Propag., Vol. 43, No. 11, 1183-1191, Nov. 1995.
doi:10.1109/TAP.1995.481168
10. Tsang, L., J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves, Vol. 1: Theory and Applications, Wiley, 2000.
doi:10.1002/0471224286
11. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves, Vol. 3: Advanced Topics, Wiley, 2001.
doi:10.1002/0471224278
12. Yang, X., Y. Du, Z. Li, and K. S. Chen, "Investigation of bistatic radar scattering from sea surfaces with breaking waves," 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2017.
13. Soriano, G. and C. A. Guerin, "A cutoff invariant two-scale model in electromagnetic scattering from sea surfaces," IEEE Geosci. Remote Sens. Lett., Vol. 5, No. 2, 199-203, Apr. 2008.
doi:10.1109/LGRS.2008.915746
14. McDaniel, S. T., "Small-slope predictions of microwave backscatter from the sea surface," Waves in Random Media, Vol. 11, No. 3, 343-360, 2001, doi: 10.1080/13616670109409789.
15. Voronovich, A. G., "Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces," Waves in Random Media, Vol. 4, No. 3, 337-367, Jul. 1994.
doi:10.1088/0959-7174/4/3/008
16. Voronovich, A. G. and V. U. Zavorotny, "Theoretical model for scattering of radar signals in Ku- and C-bands from a rough sea surface with breaking waves," Waves in Random Media, Vol. 11, No. 3, 247-269, 2001.
17. Bourlier, C. and N. Pinel, "Numerical implementation of local unified models for backscattering from random rough sea surfaces," Waves in Random and Complex Media, Vol. 19, No. 3, 455-479, Aug. 2009.
doi:10.1080/17455030902988931
18. Voronovich, A. G. and V. U. Zavorotny, "Full-polarization modeling of monostatic and bistatic radar scattering from a rough sea surface," IEEE Trans. Antennas Propag., Vol. 62, No. 3, 1362-1371, Mar. 2014.
doi:10.1109/TAP.2013.2295235
19. Nouguier, F., C. A. Guerin, and B. Chapron, "Scattering from nonlinear gravity waves: The “Choppy wave” model," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 12, 4184-4192, Dec. 2010.
doi:10.1109/TGRS.2010.2050694
20. Li, X. and X. Xu, "Scattering and Doppler spectral analysis for two-dimensional linear and nonlinear sea surfaces," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 2, 603-611, Feb. 2011.
doi:10.1109/TGRS.2010.2060204
21. Apel, J. R., "An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter," J. Geophys. Res. Oceans, Vol. 99, 16269-16291, 1994.
doi:10.1029/94JC00846
22. Romeiser, R., W. Alpers, and V. Wismann, "An improved composite surface model for the radar backscattering cross section of the ocean surface: 1. Theory of the model and optimization/validation by scatterometer data," J. Geophys. Res. Oceans, Vol. 102, 25237-25250, 1997.
doi:10.1029/97JC00190
23. Elfouhaily, T., B. Chapron, K. Katsaros, and D. Vandemark, "A unified directional spectrum for long and short wind-driven waves," Journal of Geophysical Research, Vol. 102, No. C7, 15781-15796, Jul. 15, 1997.
doi:10.1029/97JC00467
24. Hwang, P. A., "Observations of swell influence on ocean surface roughness," J. Geophys. Res. Oceans, Vol. 113, C12024, 2008.
25. Hwang, P. A., "A note on the ocean surface roughness spectrum," J. Atmos. Ocean. Technol., Vol. 28, 436-443, 2011.
doi:10.1175/2010JTECHO812.1
26. Hwang, P. A., D. M. Burrage, D. W. Wang, and J. C. Wesson, "Ocean surface roughness spectrum in high wind condition for microwave backscatter and emission computations," J. Atmos. Ocean. Technol., Vol. 30, 2168-2188, 2013.
doi:10.1175/JTECH-D-12-00239.1
27. Hwang, P. A. and F. Fois, "Surface roughness and breaking wave properties retrieved from polarimetric microwave radar backscattering," J. Geophys. Res. Oceans, Vol. 120, 3640-3657, 2015.
doi:10.1002/2015JC010782
28. Ellison, W., A. Balana, G. Delbos, K. Lamkaouchi, L. Eymard, C. Guillou, and C. Prigent, "New permittivity measurements of seawater," Radio Sci., Vol. 33, 639-648, 1998.
doi:10.1029/97RS02223
29. [Online], Available: https://scihub.copernicus.eu/dhus/#/home.