Vol. 93
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-06-26
Sea Wind Retrieval by Analytically-Based Geophysical Model Functions and Sentinel-1A SAR Images
By
Progress In Electromagnetics Research C, Vol. 93, 223-236, 2019
Abstract
In this paper, the sea surface wind speeds are retrieved by using an analytical scattering model, so called the analytically-based geophysical model function (GMF), from C-band Sentinel-1A VV-polarized synthetic aperture radar (SAR) images. The analytical models accurately simulate the rough surface scattering in the incidence angles range of SARs. The accuracy of the scattering results of the models depends on the sea wave spectrum. In this work, the effect of the sea spectral models on the accuracy of the sea surface wind speed retrieving is evaluated. In this regard, for omnidirectional and directional parts of sea spectrum, the Elfouhaily/Hwang spectra and Elfouhaily/McDaniel's models are employed, respectively. The VV-polarized backscattered normalized radar cross-section (NRCS) is calculated by using the first-order small-slope approximation (SSA1) with the four composite models of the mentioned omnidirectional spectra and angular spreading functions (directional part), and the backscattering results are compared with the empirical model CMOD6. Then, from the VV-polarized Sentinel-1A SAR data in two resolutions, the wind speeds are estimated by the analytical and empirical models. The comparison of analytical models with CMOD6 shows that Hwang-Elfouhaily model is the best among the composite models. The results show that the analytical scattering models can be easily used for the sea wind speed retrieving below 20 m/s.
Citation
Nafiseh Radkani Bijan Zakeri , "Sea Wind Retrieval by Analytically-Based Geophysical Model Functions and Sentinel-1A SAR Images," Progress In Electromagnetics Research C, Vol. 93, 223-236, 2019.
doi:10.2528/PIERC19032705
http://www.jpier.org/PIERC/pier.php?paper=19032705
References

1. Hersbach, H., "CMOD5 an improved geophysical model function for ERS C-band scatterometry," ECMWF Technical Memorandum, 395, Technical report, ECMWF, Jan. 2003.

2. Hersbach, H., "CMOD5.N a C-band geophysical model function for equivalent neutral wind," ECMWF Technical Memorandum, 554, Technical report, ECMWF, Apr. 2008.

3. Elyouncha, A., X. Neyt, A. Stoffelen, and J. Verspeek, "Assessment of the corrected CMOD6 GMF using scatterometer data," Proc. SPIE, Vol. 9638, No. 3, 11 pages, Oct. 2015.

4. Monaldo, F., C. Jackson, X. Li, and W. G. Pichel, "Preliminary evaluation of Sentinel-1A wind speed retrievals," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 9, No. 6, 2638-2642, 2016.
doi:10.1109/JSTARS.2015.2504324

5. La, T. V., A. Khenchaf, F. Comblet, and C. Nahum, "Exploitation of C-band Sentinel-1 images for high-resolution wind field retrieval in coastal zones (Iroise coast, France)," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 10, No. 12, 5458-5471, Dec. 2017.
doi:10.1109/JSTARS.2017.2746349

6. Mouche, A. and B. Chapron, "Global C-band Envisat, RADARSAT-2 and Sentinel-1 SAR measurements in copolarization and cross-polarization," J. Geophys. Res. Oceans, Vol. 120, 7195-7207, 2015, doi: 10.1002/2015JC011149.
doi:10.1002/2015JC011149

7. Lu, Y., B. Zhang, W. Perrie, A. A. Mouche, X. Li, and H. Wang, "A C-band geophysical model function for determining coastal wind speed using synthetic aperture radar," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 11, No. 7, 2417-2428, 2018.
doi:10.1109/JSTARS.2018.2836661

8. Miret, D., G. Soriano, and M. Saillard, "Rigorous simulations of microwave scattering from finite conductivity two-dimensional sea surfaces at low grazing angles," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 6, 3150-3158, Jun. 2014.
doi:10.1109/TGRS.2013.2271384

9. Hastings, F. D., J. B. Schneider, and S. L. Broschat, "A Monte-Carlo FDTD technique for rough surface scattering," IEEE Trans. Antennas Propag., Vol. 43, No. 11, 1183-1191, Nov. 1995.
doi:10.1109/TAP.1995.481168

10. Tsang, L., J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves, Vol. 1: Theory and Applications, Wiley, Hoboken, NJ, USA, 2000.
doi:10.1002/0471224286

11. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves, Vol. 3: Advanced Topics, Wiley, Hoboken, NJ, USA, 2001.
doi:10.1002/0471224278

12. Yang, X., Y. Du, Z. Li, and K. S. Chen, "Investigation of bistatic radar scattering from sea surfaces with breaking waves," 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2017.

13. Soriano, G. and C. A. Guerin, "A cutoff invariant two-scale model in electromagnetic scattering from sea surfaces," IEEE Geosci. Remote Sens. Lett., Vol. 5, No. 2, 199-203, Apr. 2008.
doi:10.1109/LGRS.2008.915746

14. McDaniel, S. T., "Small-slope predictions of microwave backscatter from the sea surface," Waves in Random Media, Vol. 11, No. 3, 343-360, 2001, doi: 10.1080/13616670109409789.

15. Voronovich, A. G., "Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces," Waves in Random Media, Vol. 4, No. 3, 337-367, Jul. 1994.
doi:10.1088/0959-7174/4/3/008

16. Voronovich, A. G. and V. U. Zavorotny, "Theoretical model for scattering of radar signals in Ku- and C-bands from a rough sea surface with breaking waves," Waves in Random Media, Vol. 11, No. 3, 247-269, 2001.

17. Bourlier, C. and N. Pinel, "Numerical implementation of local unified models for backscattering from random rough sea surfaces," Waves in Random and Complex Media, Vol. 19, No. 3, 455-479, Aug. 2009.
doi:10.1080/17455030902988931

18. Voronovich, A. G. and V. U. Zavorotny, "Full-polarization modeling of monostatic and bistatic radar scattering from a rough sea surface," IEEE Trans. Antennas Propag., Vol. 62, No. 3, 1362-1371, Mar. 2014.
doi:10.1109/TAP.2013.2295235

19. Nouguier, F., C. A. Guerin, and B. Chapron, "Scattering from nonlinear gravity waves: The “Choppy wave” model," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 12, 4184-4192, Dec. 2010.
doi:10.1109/TGRS.2010.2050694

20. Li, X. and X. Xu, "Scattering and Doppler spectral analysis for two-dimensional linear and nonlinear sea surfaces," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 2, 603-611, Feb. 2011.
doi:10.1109/TGRS.2010.2060204

21. Apel, J. R., "An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter," J. Geophys. Res. Oceans, Vol. 99, 16269-16291, 1994.
doi:10.1029/94JC00846

22. Romeiser, R., W. Alpers, and V. Wismann, "An improved composite surface model for the radar backscattering cross section of the ocean surface: 1. Theory of the model and optimization/validation by scatterometer data," J. Geophys. Res. Oceans, Vol. 102, 25237-25250, 1997.
doi:10.1029/97JC00190

23. Elfouhaily, T., B. Chapron, K. Katsaros, and D. Vandemark, "A unified directional spectrum for long and short wind-driven waves," Journal of Geophysical Research, Vol. 102, No. C7, 15781-15796, Jul. 15, 1997.
doi:10.1029/97JC00467

24. Hwang, P. A., "Observations of swell influence on ocean surface roughness," J. Geophys. Res. Oceans, Vol. 113, C12024, 2008.

25. Hwang, P. A., "A note on the ocean surface roughness spectrum," J. Atmos. Ocean. Technol., Vol. 28, 436-443, 2011.
doi:10.1175/2010JTECHO812.1

26. Hwang, P. A., D. M. Burrage, D. W. Wang, and J. C. Wesson, "Ocean surface roughness spectrum in high wind condition for microwave backscatter and emission computations," J. Atmos. Ocean. Technol., Vol. 30, 2168-2188, 2013.
doi:10.1175/JTECH-D-12-00239.1

27. Hwang, P. A. and F. Fois, "Surface roughness and breaking wave properties retrieved from polarimetric microwave radar backscattering," J. Geophys. Res. Oceans, Vol. 120, 3640-3657, 2015.
doi:10.1002/2015JC010782

28. Ellison, W., A. Balana, G. Delbos, K. Lamkaouchi, L. Eymard, C. Guillou, and C. Prigent, "New permittivity measurements of seawater," Radio Sci., Vol. 33, 639-648, 1998.
doi:10.1029/97RS02223

29. [Online], Available: https://scihub.copernicus.eu/dhus/#/home,.