Vol. 87
Latest Volume
All Volumes
PIERL 123 [2024] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-09-03
A Novel Three-Parameter Fully Tunable BP Filter
By
Progress In Electromagnetics Research Letters, Vol. 87, 45-50, 2019
Abstract
The research and development of microwave-tunable equipment has promoted the advancement of electronic countermeasures and electronic surveillance in the field of military communications. The research of fully tunable filters is a hotspot in the field of tunable filter research. Parameters such as center frequency (CF), absolute bandwidth (ABW), and transmission zero (TZ) are important indicators of fully tunable filters. In this paper, a high-performance fully tunable substrate integrated waveguide filter is designed and fabricated to achieve constant ABW (100 MHz) and TZ (1.59 GHz) with CF tunable, and the adjustable range is 1.1-1.3 GHz. Meanwhile, the constant CF (1.15 GHz) is achieved with the ABW tunable, and the adjustable range is 70-120 MHz. Also the constant ABW (100 MHz) and CF (1.14 GHz) are achieved with the TZ tunable, and the adjustable range is 1.59-1.89 GHz. The measured results show that the insertion loss of the tunable filter is lower than 2.04 dB, and the return loss is greater than 20 dB.
Citation
Kaiwei Zuo, Yong-Zhong Zhu, Le Li, Zheyu Li, Guohao Peng, and Xiaoyu Liu, "A Novel Three-Parameter Fully Tunable BP Filter," Progress In Electromagnetics Research Letters, Vol. 87, 45-50, 2019.
doi:10.2528/PIERL19071101
References

1. Esmaeili, M. and J. Bornemann, "Novel tunable bandstop resonators in SIW technology and their application to a dual-bandstop filter with one tunable stopband," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 1, 40-42, 2017.
doi:10.1109/LMWC.2016.2630007

2. Zuo, K., Y. Zhu, et al. "A novel miniaturized quarter mode substrate integrate waveguide tunable filter," IEICE Electronics Express, Vol. 15, No. 7, 1-6, 2018.
doi:10.1587/elex.15.20180013

3. Lan, B., C. Guo, and J. Ding, "A fully tunable two-pole bandpass filter with wide tuning range based on half mode substrate integrated waveguide," Microwave & Optical Technology Letters, Vol. 60, 2018.

4. Naeem, U., M. B. Khan, and M. F. Shafique, "Design of compact dual-mode dual-band SIW filter with independent tuning capability," Microwave and Optical Technology Letters, Vol. 60, No. 1, 178-182, 2018.
doi:10.1002/mop.30934

5. Amari, S., U. Rosenberg, and J. Bornemann, "Adaptive synthesis and design of resonator filters with source/load-multiresonator coupling," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 8, 1969-1978, 2002.
doi:10.1109/TMTT.2002.801348

6. Lu, D., T. F. Yan, and X. H. Tang, "Compact quasi-elliptic combline filter in single-layered SIW technology with two tunable transmission zeros," IEEE Wireless & Microwave Technology Conference, 2016.

7. Sigmarsson, H. H., J. Lee, D. Peroulis, et al. "Reconfigurable-order bandpass filter for frequency agile systems," Microwave Symposium Digest, IEEE, 2010.

8. "Compact frequency and bandwidth tunable bandpass-bandstop microstrip filter," IEEE Microwave and Wireless Components Letters, 1-3, 2018.

9. You, B., L. Chen, and G. Luo, "The novel reconfigurable double-layer half-mode SIW filter with tunable DMS structure," Journal of Electromagnetic Waves and Applications, 1-8, 2018.

10. Zhu, Y. Z., "A compact double folded quarter mode substrate integrated waveguide (DFQMSIW) filter," IEICE Electronics Express, Vol. 13, No. 11, 20160330-20160330, 2016.
doi:10.1587/elex.13.20160330

11. Chi, P. L, T. Yang, and T. Y. Tsai, "A fully tunable two-pole bandpass filter," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 5, 292-294, 2015.
doi:10.1109/LMWC.2015.2409794