1. Singha, U., N. Kumara, H. Khatuna, N. Kumara, V. Yadava, A. Kumara, M. Sharmaa, M. Alariaa, A. Beraa, P. K. Jain, and A. K. Sinhaa, "Design of 42GHz gyrotron for Indian fusion tokamak system," Fusion Engineering and Design, Vol. 88, No. 11, 2898-2906, November 2013.
doi:10.1016/j.fusengdes.2013.06.001 Google Scholar
2. Doane, J. L. and C. P. Moeller, "HE11 mitre bends and gaps in a circular corrugated waveguide," International Journal of Electronics, Vol. 77, No. 4, 489-509, 1994.
doi:10.1080/00207219408926081 Google Scholar
3. Kowalski, E. J., "Miter bend loss and higher order mode content measurements in overmoded millimeter-wave transmission lines,", Ph.D. diss., Massachusetts Institute of Technology, 2010. Google Scholar
4. Doane, J. L., "Mode converters for generating the HE11 (Gaussian-like) mode from TE01 in a circular waveguide," International Journal of Electronics Theoretical and Experimental, Vol. 53, No. 6, 573-585, 1985.
doi:10.1080/00207218208901551 Google Scholar
5. Doane, J. L., "Design of circular corrugated waveguides to transmit millimeter waves at ITER," Fusion Science and Technology, Vol. 53, No. 1, 159-173, 2008.
doi:10.13182/FST08-A1662 Google Scholar
6. Kiran, D. V., D. S. Narayanan, V. K. Killamsetty, and B. Mukherjee, "Photonic waveguide inspired corrugated cross-coupled notch DRA," Electromagnetics, Vol. 38, No. 7, 458-468, 2018.
doi:10.1080/02726343.2018.1519160 Google Scholar
7. Clarricoats, P. J. B. and P. K. Saha, "Attenuation in corrugated circular waveguide," Electronics Letters, Vol. 6, No. 12, 370-372, 1970.
doi:10.1049/el:19700260 Google Scholar
8. Clarricoats, P. J. and A. D. Olver, "Low attenuation in corrugated circular waveguides," Electronics Letters, Vol. 9, No. 16, 376-377, 1973.
doi:10.1049/el:19730278 Google Scholar
9. Clarricoats, P. J. B. and P. K. Saha, "Propagation and radiation behaviour of corrugated feeds Part I — Corrugated waveguide feed," Proceedings of the Institution of Electrical Engineers, Vol. 118, No. 9, 1167-1176, September 1971.
doi:10.1049/piee.1971.0211 Google Scholar
10. Vallinas, J. T., "Modern corrugated horn antennas,", Ph.D. Thesis, Universidad P´ublica de Navarra, Pamplona, 2003. Google Scholar
11. Doane, J. L., "Propagation and mode coupling in corrugated and smooth-wall circular wavguides," Journal of Infrared and Millimeter Wave, Vol. 13, 123-170, 1985. Google Scholar
12. Thumm, M., "Design of short high-power TE11-HE11 mode converters in highly overmoded corrugated waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, 301-309, February 1991.
doi:10.1109/22.102974 Google Scholar
13. Olver, A. D., "Corrugated horns," Journal of Electronics and Communication, Vol. 1, No. 4, 4-10, February 1992. Google Scholar
14. Doane, J. L., Overmoded Waveguide Components for the ECH System on PDX, No. PPPL-2071, Plasma Physics Lab, Princeton Univ., NJ, USA, 1984.
15. Nanni, E. A., S. K. Jawla, M. A. Shapiro, P. P. Woskov, and R. J. Temkin, "Low-loss transmission lines for high-power terahertz radiation," Journal of Infrared, Millimeter and Terahertz Waves, Vol. 33, No. 7, 695-714, July 2012.
doi:10.1007/s10762-012-9870-5 Google Scholar
16. Fiedziuszko, S. J. and G. A. Fiedziuszko, "Flexible waveguide with rounded corrugations,", U.S. Patent 6,559,742, issued May 6, 2003. Google Scholar
17. Patel, A., R. Goswami, K. Mahant, P. Bhatt, H. Mewada, A. Vala, K. Sathyanarayan, and S. Kulkarni, "Millimeter-wave TE01-TE11-HE11 mode converter using overmoded circular waveguide," Journal of Electromagnetic Wave and Applications, Vol. 32, No. 14, 2018.
doi:10.1080/09205071.2018.1468286 Google Scholar
18. Patel, A., R. Goswami, and P. Bhatt, "TM11 to HE11 mode converter in overmoded circular corrugated waveguide," IET Antenna and Microwave Propagation, Vol. 3, No. 8, 1202-1207, 2019.
doi:10.1049/iet-map.2018.5627 Google Scholar
19. Sathyanarayana, K., S. V. Kulkarni, A. Patel, P. Bhatt, A. Vala, H. Mewada, and K. Mahant, "Sensitivity analysis on predicted microwave performance of mode converters with geometrical tolerances for 42-GHz transmission line components," Fusion Science and Technology, Vol. 75, No. 3, 234-243, 2019.
doi:10.1080/15361055.2018.1557984 Google Scholar