1. Paul, C. R., Introduction to Electromagnetic Compatibility, Wiley, Hoboken, NJ, USA, 2006.
2. Negrea, C., M. Rangu, and P. Svasta, "SPICE modeling of thermal behavior for passive components," International Spring Seminar on Electronics Technology, 486-491, IEEE, 2011. Google Scholar
3. Wang, S., F. C. Lee, and W. G. Odendaal, "Cancellation of capacitor parasitic parameters for noise reduction application," IEEE Transactions on Power Electronics, Vol. 21, No. 4, 1125-1132, 2006.
doi:10.1109/TPEL.2006.876782 Google Scholar
4. Kovacevic, I. F., et al. "3-D electromagnetic modeling of parasitics and mutual coupling in EMI filters," IEEE Transactions on Power Electronics, Vol. 29, No. 1, 135-149, 2014.
doi:10.1109/TPEL.2013.2254130 Google Scholar
5. Yu, X., "Research on the relationship of power line filter’s performance and factors such as temperature and techniques of anti-saturation,", M.Sc. Dissertation, Department of Mechanical Engineering, Southeast University, Nanjing, China, 2017 (in Chinese). Google Scholar
6. Kotny, J. L., X. Margueron, and N. Idir, "High-frequency model of the coupled inductors used in EMI filters," IEEE Transactions on Power Electronics, Vol. 27, No. 6, 2805-2812, 2012.
doi:10.1109/TPEL.2011.2175452 Google Scholar
7. Hami, F., H. Boulzazen, and M. Kadi, "High-frequency characterization and modeling of EMI filters under temperature variations," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 6, 1906-1915, 2017.
doi:10.1109/TEMC.2017.2679700 Google Scholar
8. Kotny, J. L., T. Duquesne, and N. Idir, "EMI filter design using high frequency models of the passive components," IEEE Workshop on Signal Propagation on Interconnects, 143-146, 2011. Google Scholar
9. Hami, F., H. Boulzazen, and M. Kadi, "Wideband characterization and modeling of coupled inductors under temperature variations," IEEE International Symposium on Electromagnetic Compatibility, 1394-1401, IEEE, 2015. Google Scholar
10. Chen, H. F., C. Y. Yeh, and K. H. Lin, "A method of using two equivalent negative inductances to reduce parasitic inductances of a three-capacitor EMI filter," IEEE Transactions on Power Electronics, Vol. 24, No. 12, 2867-2872, 2009.
doi:10.1109/TPEL.2009.2023216 Google Scholar
11. Dominguez-Palacios, C., J. Bernal, and M. M. Prats, "Characterization of common mode chokes at high frequencies with simple measurements," IEEE Transactions on Power Electronics Electronics, Vol. 33, No. 5, 3975-3987, 2018.
doi:10.1109/TPEL.2017.2724639 Google Scholar
12. Gonzalez-Vizuete, P., F. Fico, A. Fernandez-Prieto, M. J. Freire, and J. Bernal Mende, "Calculation of parasitic self- and mutual-inductances of thin-film capacitors for power line filters," IEEE Transactions on Power Electronics, Vol. 34, No. 1, 236-246, 2019.
doi:10.1109/TPEL.2018.2824658 Google Scholar
13. Bernal, J., M. Freire, and S. Ramiro, "Simple and cost-effective method for improving the high frequency performance of surface-mount shunt capacitors filters," IEEE International Symposium on Electromagnetic Compatibility, 372-377, IEEE, 2015. Google Scholar
14. Chen, H. and Z. Qian, "High frequency modeling for common mode chokes based on impedance measurement," Transactions of China Electrotechnical Society, Vol. 22, No. 4, 8-12, 2007 (in Chinese). Google Scholar