Vol. 103
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-06-28
Various Models for Faults in Transmission Lines and Their Detection Using Time Domain Reflectometry
By
Progress In Electromagnetics Research C, Vol. 103, 123-135, 2020
Abstract
This paper presents new ways of modelling several types of faults that can be encountered while monitoring cables throughout their lifecycle. These models comply with the traditional RLGC representation of a transmission line, which makes them easily usable for numerical simulations in frequency-domain. Theoretical fault signatures will then be extracted in Y. J., J. Powers, T. S. Choe, C. Y. Hong, Etime-domain to provide a better way of analyzing plots given by traditional devices, like time domain reflectometers (TDR). This allows a more accurate assessment of a cable's health and condition. It will be shown in particular that some faults can be detected even if their damaged zone remains small compared to the wavelength. A direct benefit from this is that very expensive high frequency tools are not always necessary to detect these faults. The general objective of this paper is to improve fault location accuracy by combining measurement and simulation. It will be shown how this combination can become a powerful tool to detect, locate and characterize a defect in a cable. The suggested models can be applied to any type of cable, from a coaxial line to a multi wire harness. In this work, a focus has been put on civil and military aircrafts, but similar cables are also found in cars or nuclear power plants for instance.
Citation
Laurent Sommervogel, "Various Models for Faults in Transmission Lines and Their Detection Using Time Domain Reflectometry," Progress In Electromagnetics Research C, Vol. 103, 123-135, 2020.
doi:10.2528/PIERC20040706
References

1. Wheeler, K. R., D. A. Timucin, I. X. Twombly, K. F. Goebel, and P. F. Wysocki, Aging aircraft wiring fault detection survey, NASA Ames Research Center, CA 94035, 2007.

2. Auzanneau, F., "Wire troubleshooting and diagnosis: Review and perspectives," Progress In Electromagnetics Research B, Vol. 49, 253-279, 2013.
doi:10.2528/PIERB13020115

3. Lelong, A. and M. O. Carrion, "On line wire diagnosis using multi-carrier time domain reflectometry," IEEE Sensors Conference, 751-754, Christchurch, New Zealand, 2009.

4. Cozza, A. and L. Pichon, "Echo response of faults in transmission lines: Models and limitations to fault detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 12, 4155-4164, 2016.
doi:10.1109/TMTT.2016.2608774

5. Griffiths, L. A., R. Parakh, C. Furse, and B. Baker, "The invisible fray: A critical analysis of the use of reflectometry for fray location," IEEE Sensors Journal, Vol. 6, No. 3, 697-706, 2006.
doi:10.1109/JSEN.2006.874017

6. Sallem, S., L. Sommervogel, M. Olivas, and A. Peltier, "Method and device for hot air leak detection in aircraft installation by wire diagnosis," IEEE AUTOTESTCON, 1-6, 2016.

7. Loete, F., S. Noel, M. O. Carrion, and F. Auzanneau, "Feasibility of the detection of vibration induced faults in connectors by reflectometry," ICEC 24th, 2008.

8. Tang, H. and Q. Zhang, "An inverse scattering approach to soft fault diagnosis in lossy electric transmission lines," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 10, 3730-3737, 2011.
doi:10.1109/TAP.2011.2163772

9. Franchet, M., M. Olivas, N. Ravot, and L. Sommervogel, "Modelling the effect of a defect on crosstalk signals under the weak coupling assumption," PIERS Proceedings, 119-123, Xi'an, China, March 22–26, 2010.

10. Hayt, W. H. and J. A. Buck, Engineering Electromagnetics, 8th Ed., 305-307, McGraw-Hill, 2012.

11. Zhang, J., Q. B. Chen, Z. Qiu, J. L. Drewniak, and A. Orlandi, "Extraction of causal RLGC models from measurements for signal link path analysis," ISEC EMC, 1-6, 2008.

12. Schuet, S., D. Timucin, and K. Wheeler, "A model-based probabilistic inversion framework for characterizing wire fault detection using TDR," IEEE TIM, Vol. 60, No. 5, 1654-1663, 2011.

13. Shin, Y. J., J. Powers, T. S. Choe, C. Y. Hong, E. S. Song, J. G. Yook, and J. B. Park, "Application of time-frequency domain reflectometry for detection and localization of a fault on a coaxial cable," IEEE TIM, Vol. 54, No. 6, 2493-2500, 2005.

14. Paulter, N. G., "An assessment on the accuracy of time-domain reflectometry for measuring the characteristic impedance of transmission line," IEEE TIM, Vol. 50, No. 5, 1381-1388, 2001.

15. Zhang, Q., N. Berrabah, M. Franchet, and D. Vautrin, "De-embedding unmatched connectors for electric cable fault diagnosis," IFAC, Vol. 51, 1439-1444, 2018.