1. Jol, H. M., Ground Penetrating Radar: Theory and Application, 1st Ed., Elsevier Science, 2009.
2. Daniels, D. J., Ground Penetrating Radar, 2nd Ed., The Institution of Engineering and Technology, Oct. 1, 2004.
3. Persico, R., Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing, 1st Ed., Wiley-IEEE Press, Jun. 9, 2014.
4. Wang, J. and Y. Su, "Fast detection of GPR objects with cross correlation and hough transform," Progress In Electromagnetics Research C, Vol. 38, 229-239, 2013.
doi:10.2528/PIERC13022510 Google Scholar
5. Ratto, C. R., K. D. Morton, L. M. Collins, and P. A. Torrione, "Analysis of linear prediction for soil characterization in GPR data for countermine applications," Sensing and Imaging, Vol. 15, No. 1, 1-20, 2014.
doi:10.1007/s11220-014-0086-8 Google Scholar
6. Thomas, S. B. and L. P. Roy, "Thin coal layer thickness estimation using MUSIC algorithm," Proceeding of 2017 IEEE Microwaves, Radar and Remote Sensing Symposium, 99-104, Ukraine, Aug. 29-31, 2017. Google Scholar
7. Bastard, C. L., V. Baltazart, Y. Wang, and J. Saillard, "Thin pavement thickness estimation using GPR with high resolution and supper-resolution methods," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 5, 2511-2519, Aug. 2007.
doi:10.1109/TGRS.2007.900982 Google Scholar
8. Shrestha, S. and I. Arai, "Signal processing of ground penetrating radar using spectral estimation techniques to estimate the position of buried targets," EURASIP Journal on Applied Signal Processing, Vol. 12, 1198-1209, 2003. Google Scholar
9. Pan, J., C. L. Bastard, Y. Wang, and M. Sun, "Time-delay estimation using ground-penetrating radar with a support vector regression-based linear prediction method," IEEE Transactions on Geoscience and Remote Sensing, Vol. 56, No. 5, 2833-2840, May 2018, DOI: 10.1109/TGRS.2017.2784567.
doi:10.1109/TGRS.2017.2784567 Google Scholar
10. Xie, X., P. Li, H. Qin, L. Liu, and D. C. Nobes, "GPR identification of voids inside concrete based on the support vector machine algorithm," Journal of Geophysics and Engineering, Vol. 10, No. 3, 034002, 2013.
doi:10.1088/1742-2132/10/3/034002 Google Scholar
11. Williams, R. M., L. E. Ray, J. H. Lever, and A. M. Burzynski, "Crevasse detection in ice sheets using ground penetrating radar and machine learning," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 7, No. 12, 4836-4848, Dec. 2014.
doi:10.1109/JSTARS.2014.2332872 Google Scholar
12. Zou, H. and F. Yang, "Study on signal interpretation of GPR based on support vector machines," Proceeding of International Conference on Life System Modeling and Simulation, 533-539, LSMS, 2007. Google Scholar
13. El-Mahallawy, M. S. and M. Hashim, "Material classification of underground utilities from GPR images using DCT-based SVM approach," IEEE Geoscience and Remote Sensing Letters, Vol. 10, No. 6, 1542-1546, Nov. 2013.
doi:10.1109/LGRS.2013.2261796 Google Scholar
14. Bastard, C. L., Y. Wang, V. Baltazart, and X. Derobert, "Time delay and permittivity estimation by ground-penetrating radar with support vector regression," IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 4, 873-877, Apr. 2014.
doi:10.1109/LGRS.2013.2280500 Google Scholar
15. Shao, W., A. Bouzerdoum, S. L. Phung, L. Su, B. Indraratna, and C. Rujikiatkamjorn, "Automatic classification of ground penetrating radar signals for railway ballast assessment," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 10, 3961-3972, Oct. 2011.
doi:10.1109/TGRS.2011.2128328 Google Scholar
16. Sharma, P., B. Kumar, D. Singh, and S. P. Gaba, "Non-metallic pipe detection using SF-GPR: A new approach using neural network," 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 6609-6612, Beijing, China, Jul. 2016. Google Scholar
17. Sharma, P., B. Kumar, and D. Singh, "Novel adaptive buried nonmetallic pipe crack detection algorithm for ground penetrating radar," Progress In Electromagnetics Research M, Vol. 65, 79-90, 2018.
doi:10.2528/PIERM17101002 Google Scholar
18. Kumar, B., P. Sharma, and D. Singh, "Development of an efficient approach for MMW imaging system to identify concealed targets inside the book," Microwave and Optical Technology Letter, Vol. 59, No. 12, 2982-2990, Dec. 2017.
doi:10.1002/mop.30858 Google Scholar
19. Dumin, O., V. Plakhtii, D. Shyrokorad, O. Prishchenko, and G. Pochanin, "UWB subsurface radiolocation for object location classification by artificial neural networks based on discrete tomography approach," 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), 182-187, 2019.
doi:10.1109/UKRCON.2019.8879827 Google Scholar
20. Dumin, O., V. Plakhtii, O. Pryshchenko, and G. Pochanin, "Comparison of ANN and cross-correlation approaches for ultra short pulse subsurface survey," 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), 1-6, Feb. 25-29, 2020. Google Scholar
21. http://www.svms.org/history.html, Last Visited 09/07/2018.
22. Abe, S., Support Vector Machines for Pattern Classification, 2nd Ed., Springer, 2010.
doi:10.1007/978-1-84996-098-4
23. Inoue, T. and S. Abe, "Fuzzy support vector machines for pattern classification," Proceedings of International Joint Conference on Neural Networks, 2001, IJCNN'01, 1449-1454, 2001. Google Scholar
24. Lin, C. F. and S. D. Wang, "Fuzzy support vector machines," IEEE Transactions on Neural Networks, Vol. 13, No. 2, 467-471, Mar. 2002. Google Scholar
25. Abe, S., "Fuzzy support vector machines for multi label classification," Pattern Recognition, Vol. 48, No. 6, 2110-2117, Jun. 2015.
doi:10.1016/j.patcog.2015.01.009 Google Scholar
26. Wu, K. and K.-H. Yap, "Fuzzy SVM for content-based image retrieval a pseudo-label support vector machine framework," IEEE Computational Intelligence Magazine, 10-16, May 2006. Google Scholar
27. Sevakula, R. K. and N. K. Verma, "Compounding general purpose membership functions for fuzzy support vector machine under noisy environment," IEEE Transactions on Fuzzy Systems, Vol. 25, No. 6, 1446-1459, Dec. 2017.
doi:10.1109/TFUZZ.2017.2722421 Google Scholar