Vol. 94
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-07-16
Analysis of Interference Between Vast Numbers of Automotive Radars Considering Stochastic Temporal Conditions
By
Progress In Electromagnetics Research M, Vol. 94, 131-142, 2020
Abstract
With a constantly increasing number of cars equipped with 77 GHz automotive radar, the performance degrading effects of crosstalk are becoming a rising threat to radar-enabled automated driving functions. Since interference is sensitive to slight changes of temporal and spatial conditions of the scenario, meaningful measurements are hard to conduct which is why simulations are an important supplement. In this paper, a simulation model is introduced that estimates the distribution of the reduction of the detection range of automotive radars due to multiple interferers focusing on stochastic temporal conditions. The underlying system model calculates the direction- and timing-dependent influence of one single interferer on the detection range of the host radar. The model is kept simple, making it suitable for Monte Carlo methods, which allow the indispensable statistical evaluation of the broadly spread results. Finally, a method is presented that transfers multiple statistics regarding single interferers into a single environment. The computing time of the simulation grows linearly with the number of interfering radars, so the effects of vast numbers of interferers can be studied using this simulation model. Statistical evaluations of the detection performance degradation of a front-mounted radar in sample highway scenarios, containing up to ten interfering radar sensors, are performed in this paper.
Citation
Konstantin Hahmann, Stefan Schneider, and Thomas Zwick, "Analysis of Interference Between Vast Numbers of Automotive Radars Considering Stochastic Temporal Conditions," Progress In Electromagnetics Research M, Vol. 94, 131-142, 2020.
doi:10.2528/PIERM20051803
References

1. Winner, H., S. Hakuli, F. Lotz, and C. Singer, Sensors for DAS, Springer, 2016.

2. Oprisan, D. and H. Rohling, "Analysis of mutual interference between automotive radar systems," International Radar Symposium (IRS), 83-90, Berlin, Germany, 2005.        Google Scholar

3. Brooker, G. M., "Mutual interference of millimeter-wave radar systems," IEEE Trans. Electromagn. Compat., Vol. 49, No. 1, 170-181, 2007.
doi:10.1109/TEMC.2006.890223        Google Scholar

4. Goppelt, M. and H.-L. Blöcher, "Automotive radar - Investigation of mutual interference mechanisms," Advances in Radio Science, Vol. 8, 55-60, 2010.
doi:10.5194/ars-8-55-2010        Google Scholar

5. Schipper, T., et al. "Simulative prediction of the interference potential between radars in common road scenarios," IEEE Trans. Electromagn. Compat., Vol. 57, No. 3, 322-328, 2015.
doi:10.1109/TEMC.2014.2384996        Google Scholar

6. Schipper, T., et al. "A simulator for multi-user automotive radar scenarios," IEEE MTT-S Int. Conf. Microwaves Intell. Mobility, 1-4, 2015.        Google Scholar

7. Al-Hourani, A., R. J. Evans, S. Kandeepan, B. Moran, and H. Eltom, "Stochastic geometry methods for modeling automotive radar interference," IEEE Transactions on Intelligent Transportation Systems, Vol. 19, No. 2, 333-344, 2017.
doi:10.1109/TITS.2016.2632309        Google Scholar

8. Munari, A., L. Simić, and M. Petrova, "Stochastic geometry interference analysis of radar network performance," IEEE Communications Letters, Vol. 22, No. 11, 2362-2365, 2018.
doi:10.1109/LCOMM.2018.2869742        Google Scholar

9. Terbas, D., F. Laghezza, F. Jansen, A. Filippi, and J. Overdevest, "Radar to radar interference in common traffic scenarios," 16th European Radar Conference (EuRAD), 177-180, 2019.        Google Scholar

10. Skaria, S., A. Al-Hourani, R. J. Evans, K. Sithamparanathan, and U. Parampalli, "Interference mitigation in automotive radars using pseudo-random cyclic orthogonal sequences," Sensors, Vol. 19, 4459, 2019.
doi:10.3390/s19204459        Google Scholar

11. Hahmann, K., S. Schneider, and T. Zwick, "Evaluation of probability of interference-related ghost targets in automotive radars," 2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), 1-4, 2018.        Google Scholar

12. Hahmann, K., S. Schneider, and T. Zwick, "Estimation of the influence of incoherent interference on the detection of small obstacles with a DBF radar," 2019 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), 1-4, 2019.        Google Scholar

13. Schipper, T., "Modellbasierte analyse des interferenzverhaltens von Kfz-Radaren,", Ph.D. dissertation, Karlsruhe Institiute of Technology, 2017.        Google Scholar

14. Richards, M., J. Scheer, and W. Holm, "The radar range equation," Principles of Modern Radar, SciTech, Raleigh, NY, 2010.        Google Scholar

15. Harris, F. J., "On the use of windows for harmonic analysis with the discrete Fourier transform," Proceedings of the IEEE, Vol. 66, No. 1, 51-83, 1978.
doi:10.1109/PROC.1978.10837        Google Scholar

16. Fischer, C., H.-L. Blöcher, J. Dickmann, and W. Menzel, "Robust detection and mitigation of mutual interference in automotive radar," 2015 16th International Radar Symposium (IRS), 143-148, 2015.
doi:10.1109/IRS.2015.7226239        Google Scholar

17. Fischer, C., M. Goppelt, H.-L. Blöcher, and J. Dickmann, "Minimizing interference in automotive radar using digital beamforming," Advances in Radio Science, Vol. 9, 45-49, 2011.
doi:10.5194/ars-9-45-2011        Google Scholar

18. Bechter, J., K. Eid, F. Roos, and C. Waldschmidt, "Digital beamforming to mitigate automotive radar interference," 2019 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), 1-4, 2016.        Google Scholar

19. Bechter, J., M. Rameez, and C. Waldschmidt, "Analytical and experimental investigations on mitigation of interference in a DBF MIMO Radar," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 5, 1727-1734, 2017.
doi:10.1109/TMTT.2017.2668404        Google Scholar

20. Bartlett, M., "Smoothing periodograms from time-series with continuous spectra," Nature, Vol. 161, 686-687, 1948.
doi:10.1038/161686a0        Google Scholar

21. Bosq, D. and H. T. Nguyen, "Basic probability background," A Course in Stochastic Processes, Springer, Dordrecht, 1996.        Google Scholar