Vol. 105
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-09-02
Specific Action as a Metric to Determine Thermal Degradation of Conductive Fabrics Exposed to High Current Impulses
By
Progress In Electromagnetics Research C, Vol. 105, 59-72, 2020
Abstract
In this paper, the thermal degradation of electro-conductive fabrics exposed to high current impulses is studied by using an equivalent resistive circuit and a technique commonly applied to the analysis of exploding wires. A method to estimate the threshold burst current of conductive fabrics is derived based on the so-called specific action, which is defined as the integral of the squared current density over the time applied at critical locations of the fabric such as the contact areas between yarns. The model has been experimentally validated on woven and non-woven fabrics using lightning impulse currents applied to the conductive fabrics coated with Cu-Ni alloy. A general rule for determining the dimensions of conductive fabrics as a function of the input-current specific-energy levels has also been derived.
Citation
John Jairo Pantoja Acosta, Jorge Alejandro Cristancho Caviativa, Jorge Enrique Rodriguez Manrique, Carlos Andres Rivera Guerrero, Jose Francisco Román Campos, Jose Felix Vega Stavro, Chaouki Kasmi, and Fahad Saif Naser Harhara Alyafei, "Specific Action as a Metric to Determine Thermal Degradation of Conductive Fabrics Exposed to High Current Impulses," Progress In Electromagnetics Research C, Vol. 105, 59-72, 2020.
doi:10.2528/PIERC20052301
References

1. Liu, Z., Y. Yang, X. C. Wang, and Z. Zhou, "Prediction model of shielding effectiveness of electromagnetic shielding fabric with rectangular hole," Progress In Electromagnetics Research C, Vol. 48, 151-157, 2014.

2. Terada, T., M. Toyoura, T. Sato, and X. Mao, "Functional fabric pattern — Examining the case of pressure detection and localization," IEEE Trans. Ind. Electron., Vol. 66, No. 10, 8224-8234, Oct. 2019.

3. Yamaguma, M. and T. Kodama, "Observation of propagating brush discharge on insulating film with grounded antistatic materials," IEEE Trans. Ind. Appl., Vol. 40, No. 2, 451-456, Mar. 2004.

4. Tokarska, M., "Characterization of electro-conductive textile materials by its biaxial anisotropy coefficient and resistivity," J. Mater. Sci. Mater. Electron., Vol. 30, No. 4, 4093-4103, 2019.

5. Ahmed, M. I., M. F. Ahmed, and A. H. A. M. Shaalan, "Novel electro-textile patch antenna on jeans substrate for wearable applications," Progress In Electromagnetics Research C, Vol. 83, 255-265, 2018.

6. Kaushik, V., et al., "Textile-based electronic components for energy applications: Principles, problems, and perspective," Nanomater. (Basel, Switzerland), Vol. 5, No. 3, 1493-1531, Sep. 2015.

7. Rybicki, T., "EMI shielding and reflection from textile mesh grids compared with analytic models," IEEE Trans. Electromagn. Compat., Vol. 61, No. 2, 372-380, Apr. 2019.

8. Kim, H., S. Lee, and H. Kim, "Electrical heating performance of electro-conductive para-aramid knit manufactured by dip-coating in a graphene/waterborne polyurethane composite," Sci. Rep., Vol. 9, No. 1, 1511, 2019.

9. Cristancho, J. A., J. E. Rodriguez M., C. A. Rivera G., F. Roman, and J. J. Pantoja, "High current tests over conductive fabrics," 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), 428-432, 2018.

10. Cristancho, J. A., J. E. Rodrıguez, C. A. Rivera, F. Roman, L. K. Herrera, and J. J. Pantoja, "Conductive fabric potential rise due to lightning impulse currents," 2019 International Symposium on Lightning Protection (XV SIPDA), 1-6, 2019.

11. Zernow, L., F. Wright, and G. Woffinden, "High-speed cinemicrographic studies of electrically exploded metal films," Exploding Wires, 245-262, 1962.

12. Chen, K. C.-Y., L. K. Warne, Y. T. Lin, R. L. Kinzel, J. D. Huff, M. B. McLean, M. W. Jenkins, and B. M. Rutherford, "Conductor fusing and gapping for bond wires," Progress In Electromagnetics Research M, Vol. 31, 199-214, 2013.

13. Dawson, J. F., A. N. Austin, I. D. Flintoft, and A. C. Marvin, "Shielding effectiveness and sheet conductance of nonwoven carbon-fiber sheets," IEEE Trans. Electromagn. Compat., Vol. 59, No. 1, 84-92, 2017.

14. Sarjeant, W. J., et al., "Threshold arcing characteristics for pulsed exploding films," 2007 16th IEEE International Pulsed Power Conference, Vol. 1, 29-32, 2007.

15. Zhao, Y., J. Tong, C. Yang, Y. Chan, and L. Li, "A simulation model of electrical resistance applied in designing conductive woven fabrics," Text. Res. J., Vol. 86, No. 16, 1688-1700, 2016.

16. DiSanto, T. M., et al., "Temporal analysis of exploding film burst phenomenon," IEEE Trans. Plasma Sci., Vol. 39, No. 1, 603-607, 2011.

17. Smorgonskiy, A., F. Rachidi, M. Rubinstein, N. V Korovkin, and A. P. Vassilopoulos, "Are standardized lightning current waveforms suitable for aircraft and wind turbine blades made of composite materials?," IEEE Trans. Electromagn. Compat., Vol. 59, No. 4, 1320-1328, Aug. 2017.

18. Pantoja, J. J., N. Pena, N. Mora, F. Rachidi, F. Vega, and F. Roman, "On the electromagnetic susceptibility of hot wire-based electroexplosive devices to RF sources," IEEE Trans. Electromagn. Compat., Vol. 55, No. 4, 2013.

19. Tucker, T. J. and R. P. Toth, "WBW1: A computer code for the prediction of the behavior of electrical circuits containing exploding wire elements,", 1975, doi: 10.2172/4229184.

20. Uman, M. A., The Art and Science of Lightning Protection, Cambridge University Press, Cambridge, 2008.

21. MONEL R alloy R-405, Special Metals, https://www.specialmetals.com/assets/smc/documents/alloys/monel/monel-alloy-r-405.pdf (accessed Feb. 13, 2020)..

22. IEC 62305-1 — Protection against lightning — Part 1: General principles, IEC — International Electrotechnical Commission, 2010.