1. Semenov, S. Y., A. E. Bulyshev, V. G. Posukh, Y. E. Sizov, T. C. Williams, and A. E. Souvorov, "Microwave tomography for detection/imaging of myocardial infarction. 1. Excised canine hearts," Ann. Biomed. Eng., Vol. 31, 262-270, 2003.
doi:10.1114/1.1553452 Google Scholar
2. Anishchenko, L. N., I. L. Alborova, M. A. Chizh, and A. V. Zhuravlev, "Microwave imaging of biological tissue phantom in different frequency ranges," 2016 Progress In Electromagnetic Research Symposium (PIERS), 4639-4643, Shanghai, China, August 8–11, 2016. Google Scholar
3. Yaswanth, K., S. Bhattacharya, and U. K. Khankhoje, "Algebraic reconstruction techniques for inverse imaging," 2016 International Conference on Electromagnetics in Advanced Applications (ICEAA), Cairns, Australia, September 2016. Google Scholar
4. Benny, R., T. A. Anjit, and P. Mythili, "An overview of microwave imaging for breast tumor detection," Progress In Electromagnetics Research B, Vol. 87, 61-91, 2020.
doi:10.2528/PIERB20012402 Google Scholar
5. Huang, T. and A. S. Mohan, "Microwave imaging of perfect electrically conducting cylinder by micro-genetic algorithm," IEEE Antennas and Propagation Society Symposium, Vol. 1, IEEE, 2004. Google Scholar
6. Semenov, S. Y., et al., "Microwave-tomographic imaging of the high dielectric-contrast objects using different image-reconstruction approaches," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 7, 2284-2294, July 2005.
doi:10.1109/TMTT.2005.850459 Google Scholar
7. Chew, W. C. and G. P. Otto, "Microwave imaging of multiple metallic cylinders using shape functions," IEEE Antennas and Propagation Society International Symposium, 1992 Digest, IEEE, 1992. Google Scholar
8. Colgan, T. J., S. C. Hagness, and B. D. van Veen, "A 3-D level set method for microwave breast imaging," IEEE Trans. Biomed. Eng., Vol. 62, No. 10, 2526-2534, 2015.
doi:10.1109/TBME.2015.2435735 Google Scholar
9. Bayat, N. and P. Mojabi, "A mathematical framework to analyze the achievable resolution from microwave tomography," IEEE Trans. Antennas and Propag., Vol. 64, No. 4, 1484-1489, 2016.
doi:10.1109/TAP.2016.2526061 Google Scholar
10. Rocca, P., M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse problems," Inverse Prob., Vol. 25, 1-41, 2009. Google Scholar
11. Majobi, P. and J. LeVetri, "Comparison of TE and TM inversions in the framework of the GaussNewton method," IEEE Trans. Antennas and Propag., Vol. 64, 1336-1348, 2010.
doi:10.1109/TAP.2010.2041156 Google Scholar
12. Candes, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731 Google Scholar
13. Lustig, M., D. Donoho, and J. M. Pauly, "Sparse MRI: The application of compressed sensing for rapid MR imaging," Magnetic Resonance in Medicine, Vol. 58, No. 6, 1182-1195, 2008.
doi:10.1002/mrm.21391 Google Scholar
14. Pan, X. and E. Y. Sidky, "Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization," Physics in Medicine and Biology, Vol. 53, No. 17, 4777-4807, 2008.
doi:10.1088/0031-9155/53/17/021 Google Scholar
15. Chinn, G., P. D. Olcott, and C. S. Levin, "Sparse signal recovery methods for multiplexing PET detector readout," IEEE Transactions on Medical Imaging, Vol. 32, 932-942, 2013.
doi:10.1109/TMI.2013.2246182 Google Scholar
16. Rudin, L. I. and S. Osher, "Total variation based image restoration with free local constraints," Proc. International Conf. Image Processing, Austin, USA, 1994. Google Scholar
17. Zhou, H. and R. M. Narayan, "Microwave imaging of nonsparse object using dual-mesh method and iterative method," IEEE Trans. Antennas and Propag., Vol. 67, 504-512, 2019.
doi:10.1109/TAP.2018.2876164 Google Scholar
18. Yalcin, E. and O. Ozdemir, "Sparsity based regularization for microwave imaging with NESTA algorithm," Proc. IEEE Conference on Antennas Measurements and Applications (CAMA), Tsukuba, Japan, 2017. Google Scholar
19. Jamali, N. H., et al., "Image reconstruction based on combination of inverse scattering technique and total variation regularization method," Indonesian Journal of Electrical Engineering and Computer Science, Vol. 5, No. 3, 569-576, 2017.
doi:10.11591/ijeecs.v5.i3.pp569-576 Google Scholar
20. Chen, S. and D. Donoho, "Basis pursuit,", Technical Report, Department of Statistics, Stanford University, 1995. Google Scholar
21. Azghani, M. and F. Marvasti, "L2-regularized iterative weighted algorithm for inverse scattering," IEEE Trans. Antennas and Propag., Vol. 64, No. 6, 2293-2300, 2016.
doi:10.1109/TAP.2016.2546385 Google Scholar
22. Tibshirani, R., "Regression shrinkage and selection via the LASSO," J. Roy. Statist. Soc., ser. B, Vol. 58, No. 1, 267-288, 1996. Google Scholar
23. Chartrand, R. and V. Staneva, "Restricted isometry properties and nonconvex compressive sensing," Inverse Prob., Vol. 24, 035020, 2008.
doi:10.1088/0266-5611/24/3/035020 Google Scholar
24. Wang, Y., J. Zeng, Z. Peng, X. Chang, and Z. Xu, "Linear convergence of adaptively iterative thresholding algorithms for compressed sensing," IEEE Transactions on Signal Processing, Vol. 63, No. 11, 2957-2971, June 2015.
doi:10.1109/TSP.2015.2412915 Google Scholar
25. Mansour, H. and O. Yilmaz, "Support driven reweighted 1 minimization," 2012 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), 2012. Google Scholar
26. Asif, M. S. and J. Romberg, "Sparse recovery of streaming signals using l1-homotopy," IEEE Transactions on Signal Processing, Vol. 62, No. 16, 4209-4223, July 2014.
doi:10.1109/TSP.2014.2328981 Google Scholar
27. Tavassolian, N., H. Kanj, and M. Popovic, "Assessment of Dark eyes antenna radiation in the vicinity of the realistic breast model," 12th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Montreal, Canada, July 2006. Google Scholar
28. Fear, E. C. and M. Okoniewski, "Confocal microwave imaging for breast tumor detection: Application to a hemispherical breast model," 2002 IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1759-1762, June 2–7, 2002. Google Scholar
29. Estatico, C., M. Pastorino, and A. Randazzo, "A novel microwave imaging approach based on regularization in banach spaces," IEEE Trans. Antennas and Propag., Vol. 60, No. 7, 3373-3381, 2012.
doi:10.1109/TAP.2012.2196925 Google Scholar
30. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Eng., Vol. 49, No. 8, 812-822, 2002.
doi:10.1109/TBME.2002.800759 Google Scholar
31. Philip, C., T. A. Anjit, and P. Mythili, "A compact egg-shaped UWB antenna for breast dielectric profile imaging," International Journal of Scientific & Technology Research (IJSTR), Vol. 9, No. 3, March 2020. Google Scholar