Vol. 97
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-10-10
Flexible Frequency Selective Surface in Convoluted Square Form with Microstrip Patch for X-Band Application
By
Progress In Electromagnetics Research M, Vol. 97, 97-106, 2020
Abstract
This article reports a very efficient Frequency Selective Surface (FSS) with Convoluted Square Loop (CSL) shape is designed for applications in the X-band. They are designed on the surfaces of an FR-4 substrate. Frequency selective surface (FSS) is a combination of a periodic structure designed to selectively absorb, reflect, and transmit the electromagnetic (EM) waves. FR-4 material provides durability and flexibility. A convoluted square loop structure reduces the size of the unit cell, and it also has a better stability with good gain. So, a CSL patch with a CSL FSS array with a slot on dual FR4 substrates is introduced for the improvement in overall gain and bandwidth. As per the design parameters, a structure is designed at 10GHz. This structure is designed with ANSYS HFSS. The proposed antenna structure has a return loss of -36.424 db, and VSWR value is 1.0307. The measurement results show a gain improvement of 6.266db and bandwidth of 5.882 db.
Citation
Paulpandian Palniladevi, and Priya Dharshini Ramaraj, "Flexible Frequency Selective Surface in Convoluted Square Form with Microstrip Patch for X-Band Application," Progress In Electromagnetics Research M, Vol. 97, 97-106, 2020.
doi:10.2528/PIERM20082002
References

1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, Hoboken, NJ, USA, 2000.
doi:10.1002/0471723770

2. Farooq, U., M. F. Shafique, and M. J. Mughal, "Polarization insensitive dual band frequency selective surface for RF shielding through glass windows," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 1, 93-100, Feb. 2019.
doi:10.1109/TEMC.2019.2893408

3. Sarika, M. R. Tripathy, and D. Ronnow, "A wideband frequency selective surface reflector for 4G/X-band/Ku-band," Progress In Electromagnetics Research C, Vol. 81, 151-159, 2018.
doi:10.2528/PIERC18010908

4. Hussein, M., J. Zhou, Y. Huang, and B. A. Juboori, "A low-profile miniaturized second-order band-pass frequency selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2791-2794, 2017.

5. Aseri, K. and S. Yadav, "A novel hexagonal shaped based band stop frequency selective surface with multiband applications," International Conference on ICT for Sustainable Development, 289-297, 2016.
doi:10.1007/978-981-10-0129-1_31

6. Rahim, T., F. Khan, J. Xu, and L. Zhang, "Design X-band frequency selective surface with band pass characteristics based on miniaturized unit cell," 2016 13th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 592-594, Jan. 2016.
doi:10.1109/IBCAST.2016.7429937

7. Liu, N., X.-J. Sheng, J.-J. Fan, and D. Guo, "An angular stable dual-band frequency selective surface with closely spaced resonances," Progress In Electromagnetics Research Letters, Vol. 70, 1-6, 2017.
doi:10.2528/PIERL17070302

8. Li, W., et al., "A miniaturized frequency selective surface based on square loop aperture element," International Journal of Antennas and Propagation, Vol. 2014, 1-6, 2014.

9. Chakraborty, U., S. Chatterjee, S. K. Chowdhury, and P. P. Sarkar, "A compact microstrip patch antenna for wireless communication," Progress In Electromagnetics Research C, Vol. 18, 211-220, 2011.
doi:10.2528/PIERC10101205