1. Abdel-Haleem, M. R., T. Abouelnaga, S. M. Ahmed, et al. "Convex lenses horn antenna microwave hyperthermia scheme," 12th European Conference on Antennas and Propagation (EuCAP), London, UK, 2018. Google Scholar
2. Choi, W. C., S. Lim, and Y. J. Yoon, "Design of noninvasive hyperthermia system using transmit-array lens antenna configuration," IEEE Antennas and Wireless Propag. Lett., Vol. 15, 857-860, 2015.
doi:10.1109/LAWP.2015.2477428 Google Scholar
3. Nguyen, P. T., A. Abbosh, and S. Crozier, "Three-dimensional microwave hyperthermia for breast cancer treatment in a realistic environment using particle swarm optimization," IEEE Trans. Biomed. Eng., Vol. 64, No. 6, 1335-1344, 2017.
doi:10.1109/TBME.2016.2602233 Google Scholar
4. Tao, Y. and G. Wang, "Conformal hyperthermia of superficial tumor with cylindrical left-handed metamaterial lens applicator," Progress In Electromagnetics Research C, Vol. 66, 1-10, 2016.
doi:10.2528/PIERC16050303 Google Scholar
5. Tao, Y., E. Yang, and G. Wang, "Left-handed metamaterial lens applicator with built-in cooling feature for superficial tumor hyperthermia," Appl. Computational Electromagnetics Society J., Vol. 32, No. 11, 1029-1034, 2017. Google Scholar
6. Asili, M., P. Chen, A. Z. Hood, et al. "Flexible microwave antenna applicator for chemo thermotherapy of the breast," IEEE Antennas and Wireless Propag. Lett., Vol. 14, 1778-1781, 2014. Google Scholar
7. Datta, N. R., et al., "Local hyperthermia combined with radiotherapy and/or chemotherapy: Recent advances and promises for the future," Cancer Treat. Reviews, Vol. 41, No. 9, 742-753, 2015.
doi:10.1016/j.ctrv.2015.05.009 Google Scholar
8. ACR ARC BI-RADS Atlas, American College of Radiology, 2013.
9. Giuliano, A. E., J. L. Connolly, S. B. Edge, et al. "Breast cancer-major changes in the American Joint Committee on Cancer eighth edition cancer staging manual," A Cancer J. for Clinicians, Vol. 67, No. 4, 290-303, 2017.
doi:10.3322/caac.21393 Google Scholar
10. Nguyen, P. T., A. Abbosh, and S. Crozier, "Three-dimensional microwave hyperthermia for breast cancer treatment in a realistic environment using particle swarm optimization," IEEE Trans. Biomed. Eng., Vol. 64, No. 6, 1335-1344, 2016.
doi:10.1109/TBME.2016.2602233 Google Scholar
11. Stang, J., M. Haynes, P. Carson, and M. Moghaddam, "A preclinical system prototype for focused microwave thermal therapy of the breast," IEEE Trans. Biomed. Eng., Vol. 59, No. 9, 2431-2438, 2012.
doi:10.1109/TBME.2012.2199492 Google Scholar
12. He, X., W. Geyi, and Sh. Wang, "Optimal design of focused arrays for microwave-induced hyperthermia," IET Microw., Antennas Propag., Vol. 9, No. 14, 1605-1611, 2015.
doi:10.1049/iet-map.2014.0696 Google Scholar
13. Curto, S., T. S. P. See, P. McEvoy, et al. "In-silico hyperthermia performance of a near-field patch antenna at various positions on a human body model," IET Microw., Antennas Propag., Vol. 5, No. 12, 1408-1415, 2011.
doi:10.1049/iet-map.2010.0611 Google Scholar
14. Karnik, N. S., R. Tulpule, M. Shah, et al. IET Microw., Antennas Propag., Vol. 4, No. 2, 162-174, 2010.
doi:10.1049/iet-map.2008.0352 Google Scholar
15. Wang, G. and Y. Gong, "Metamaterial lens applicator for microwave hyperthermia of breast cancer," Int. J. Hyperthermia, Vol. 25, No. 6, 434-445, 2009.
doi:10.1080/02656730903061609 Google Scholar
16. Tao, Y. and G. Wang, "Conformal hyperthermia of superficial tumor with cylindrical left-handed metamaterial lens applicator," Progress In Electromagnetics Research C, Vol. 66, 1-10, 2016.
doi:10.2528/PIERC16050303 Google Scholar
17. Keshavarz, S., A. Abdipour, A. Mohammadi, and R. Keshavarz, "Design and implementation of low loss and compact microstrip triplexer using CSRR loaded coupled lines," International Journal of Electronics and Communications (AEU), Vol. 111, 2019. Google Scholar
18. Keshavarz, S. and N. Nozhat, "Dual-band Wilkinson power divider based on composite right/left-handed transmission lines," 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Thailand, 2016. Google Scholar
19. Harrington, R. F., SphericalWave Function, Time-Harmonic Electromagnetic Fields, McGraw-Hill, 1961.
20. Luhn, S. and M. Hentschel, "Analytical Fresnel laws for curved dielectric interfaces," Journal of Optics, Vol. 22, 2020. Google Scholar
21. Lazebnik, M., D. Popovic, L. McCartney, et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, No. 20, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002 Google Scholar
22. Ashok Kumar, S. and T. Shanmuganantham, "Design and analysis of implantable CPW fed bowtie antenna for ISM band applications," AEU — Int. J. of Electron. and Commun., Vol. 68, No. 2, 158-165, 2014.
doi:10.1016/j.aeue.2013.08.003 Google Scholar
23. Ashok Kumar, S. and T. Shanmuganantham, "Design of implantable CPW fed monopole H-slot antenna for 2.45 GHz ISM band applications," AEU — Int. J. of Electron. and Commun., Vol. 68, No. 7, 661-666, 2014.
doi:10.1016/j.aeue.2014.02.010 Google Scholar
24. Ivashina, M. V., J. Simons, and J. G. Bij De Vaate, "Efficiency analysis of focal plane arrays in deep dishes," The Square Kilometre Array: An Engineering Perspective, 149-162, Dordrecht, Springer, 2005. Google Scholar
25. Dahri, M. H., M. H. Jamaluddin, F. C. Seman, et al. "Aspects of efficiency enhancement in reflectarrays with analytical investigation and accurate measurement," Electronics, Vol. 9, No. 11, 2020.
doi:10.3390/electronics9111887 Google Scholar
26. Gholipur, T. and M. Nakhkash, "Optimized matching liquid with wide-slot antenna for microwave breast imaging," AEU — Int. J. of Electron. and Commun., Vol. 85, 192-197, 2018.
doi:10.1016/j.aeue.2017.12.037 Google Scholar
27. Pe’rez Cesaretti, M. D., General effective medium model for the complex permittivity extraction with an open-ended coaxial probe in presence of a multilayer material under test, Ph.D. dissertation, University of Bologna, Italy, 2012.
28. Hu, F., J. Song, and T. Kamgaing, "Modeling of multilayered media using effective medium theory," 19th Conference on Electrical Performance of Electronic Packaging and Systems, USA, Oct. 2010. Google Scholar
29. Gabriel, N. H., L. C. James, J. D. Carl, et al. "AJCC cancer staging manual," American Joint Committee on Cancer (AJCC), 589-628, Springer, New York, 2017. Google Scholar
30. Council of the European Union "Council Recommendation: On the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz)," Official Journal of the European Communities, 1999. Google Scholar
31. Meaney, P., T. Rydholm, and H. Brisby, "A transmission-based dielectric property probe for clinical applications," Sensors, Vol. 18, No. 10, 3484, 2018.
doi:10.3390/s18103484 Google Scholar
32. SPEAG DAK Professional Handbook V2.4, Schmid & Partner Engineering AG, 2016.
33. Lazebnik, M. and M. Okoniewski, "Highly accurate debye models for normal and malignant breast tissue dielectric properties at microwave frequencies," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 12, 822-824, 2007.
doi:10.1109/LMWC.2007.910465 Google Scholar
34. Dadzadi, A. and R. Faraji-Dana, "Breast cancer hemispheric shaped hyperthermia system designed with compact conformal planar antenna array," IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 2019. Google Scholar
35. Choi, W. C., S. Lim, and Y. J. Yoon, "Evaluation of transmit-array lens antenna for deep-seated hyperthermia tumor treatment," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 5, 866-870, 2020.
doi:10.1109/LAWP.2020.2982676 Google Scholar