1. "Wuhan municipal health commission infection data,", [Online] Available: http://wjw.wuhan.gov.cn/front/web/list2nd/no/710, 2020.
doi:10.1016/j.csbj.2019.01.003 Google Scholar
2. Kwok, K. O., A. Tang, V. W. Wei, W. H. Park, E. K. Yeoh, and S. Riley, "Epidemic models of contact tracing: Systematic review of transmission studies of severe acute respiratory syndrome and middle east respiratory syndrome," Comput. Struct. Biotechnol. J., Vol. 17, 186194, Jan. 2019. Google Scholar
3. The World Health Organization, [Online] "WHO Director-Generals opening remarks at the media briefing on COVID-19, March 11 2020,", WHO, Mar. 11, 2020. Google Scholar
4. Wadman, M., J. Couzin-Frankel, J. Kaiser, and C. Matacic, "How does coronavirus kill? Clinicians trace a ferocious rampage through the body, from brain to toes,", Apr. 17, 2020. Google Scholar
5. Grasselli, G., A. Zangrillo, A. Zanella, et al. "Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy," JAMA, Vol. 323, No. 16, 15741581, 2020. Google Scholar
6. Couzin-Frankel, J., "Why don't some coronavirus patients sense their alarmingly low oxygen levels?,", Apr. 28, 2020. Google Scholar
7. Grasselli, G., A. Pesenti, and M. Cecconi, "Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: Early experience and forecast during an emergency response," JAMA, Vol. 323, No. 16, 15451546, 2020. Google Scholar
8. Onder, G., G. Rezza, and S. Brusaferro, "Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy," JAMA, Published online Mar. 23, 2020. Google Scholar
9. Richardson, S., J. S. Hirsch, M. Narasimhan, et al. "Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area," JAMA, published online Apr. 22, 2020. Google Scholar
10. Datasheet [Online]: https://www.dialog-semiconductor.com/products/connectivity/bluetooth-lowenergy/smartbond-da14680-and-da14681.
11. Dian, F. J., A. Yousefi, and S. Lim, "A practical study on Bluetooth Low Energy (BLE) throughput," 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 768-771, Vancouver, BC, 2018. Google Scholar
12. Datasheet [Online]: https://www.bluetooth.com/bluetooth-resources/2019-bluetooth-market-up-date/.
13. Marini, J. J. and L. Gattinoni, "Management of COVID-19 respiratory distress," JAMA, published online Apr. 24, 2020. Google Scholar
14. Caputo, N. D., R. J. Strayer, and R. Levitan, "Early self proning in awake, nonintubated patients in the emergency department: A single EDs experience during the COVID19 Pandemic," Acad. Emerg. Med., accepted Author Manuscript, 2020. Google Scholar
15. Rhodes, A., P. Ferdinande, H. Flaatten, et al. "The variability of critical care bed numbers in Europe," Intensive Care Med., Vol. 38, 16471653, 2012.
doi:10.1038/srep20474 Google Scholar
16. Viti, L., et al. "Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response," Scientific Reports, Vol. 6, No. 1, 20474, Apr. 2016.
doi:10.1126/sciadv.abb6500 Google Scholar
17. Guo, C., et al. "Anisotropic ultrasensitive PdTe 2-based phototransistor for room-temperature long-wavelength detection," Science Advances, Vol. 6, No. 36, Sept. 2020.
doi:10.1088/2053-1583/ab8ec0 Google Scholar
18. Guo, C., et al. "Ultrasensitive ambient-stable SnSe 2-based broadband photodetectors for room-temperature IR/THz energy conversion and imaging," 2D Materials, Vol. 7, No. 3, 035026, Jun. 2020. Google Scholar
19. Paolucci, V., et al. "Self-assembled SnO2=SnSe2 heterostructures: A suitable platform for ultrasensitive NO2 and H2 sensing," ACS Applied Materials & Interfaces, Vol. 12, No. 30, 3436269, Jul. 2020.
doi:10.1039/C8NR01395K Google Scholar
20. Agarwal, A., et al. "Plasmonics with two-dimensional semiconductors: From basic research to technological applications," Nanoscale, Vol. 10, No. 19, 893846, 2018.
doi:10.1063/1.4979090 Google Scholar
21. Viti, L., et al. "Black phosphorus nanodevices at terahertz frequencies: Photodetectors and future challenges," APL Materials, Vol. 5, No. 3, 035602, Mar. 2017.
doi:10.1063/1.4726188 Google Scholar
22. Liu, P., et al. "An optofluidics biosensor consisted of high-finesse Fabry-Prot resonator and micro-fluidic channel," Applied Physics Letters, Vol. 100, No. 23, 233705, Jun. 2012.
doi:10.1063/1.4802805 Google Scholar
23. Liu, P., et al. "An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Prot cavity," Applied Physics Letters, Vol. 102, No. 16, 163701, Apr. 2013.
doi:10.3390/mi10070457 Google Scholar
24. Chen, X.-M., et al. "A capillary-evaporation micropump for real-time sweat rate monitoring with an electrochemical sensor," Micromachines, Vol. 10, No. 7, 457, Jul. 2019.
doi:10.1007/s10404-018-2097-6 Google Scholar
25. Li, Y.-J., et al. "Transmission of dynamic biochemical signals in the shallow micro uidic channel: Nonlinear modulation of the pulsatile flow," Microfluidics and Nanofluidics, Vol. 22, No. 8, 81, Aug. 2018. Google Scholar