1. Nouri, H. and M. Uysal, "Experimental investigation on the effect of wavelength on aperture averaging in FSO communications," Opt. Lett., Vol. 45, No. 11, 3063-3066, 2020.
doi:10.1364/OL.389808 Google Scholar
2. Yi, X., C. Shen, P. Yue, Y. M. Wang, Q. Q. Ao, and P. Zhao, "Performance analysis for a mixed RF and multihop FSO communication system in 5G C-RAN," J. Opt. Commun. Netw., Vol. 11, No. 8, 452-464, 2019.
doi:10.1364/JOCN.11.000452 Google Scholar
3. Vitasek, J., J. Latal, S. Hejduk, J. Bocheza, P. Koudelka, J. Skapa, P. Siska, and V. Vasinek, "Atmospheric turbulences in free space optics channel," IEEE TSP, 104-107, 2011. Google Scholar
4. Vitasek, J., E. Leitgeb, T. David, J. Latal, and S. Hejduk, "Misalignment loss of free space optic link," ICTON , 2014. Google Scholar
5. Han, L.Q. and Y. H. You, "Performance of free space optical communication with combined effects from atmospheric turbulence and pointing errors," Acta Optica Sinica, Vol. 34, No. 11, 82-87, 2014. Google Scholar
6. Yi, X., Z. J. Liu, and P. Yue, "Average BER of free-space optical systems in turbulent atmosphere with exponentiated Weibull distribution," Opt. Lett., Vol. 37, No. 24, 5142-5144, 2012.
doi:10.1364/OL.37.005142 Google Scholar
7. Yi, X. and M. W. Yao, "Free-space communications over exponentiated Weibull turbulence channels with nonzero boresight pointing errors," Opt. Express, Vol. 23, No. 3, 2904-2917, 2015.
doi:10.1364/OE.23.002904 Google Scholar
8. Wang, P., L. Zhang, L. X. Guo, F. Huang, T. Shang, R. R. Wang, and Y. T. Yang, "Average BER of subcarrier intensity modulated free space optical systems over the exponentiated Weibull fading channels," Opt. Express, Vol. 22, No. 17, 20828-20841, 2014.
doi:10.1364/OE.22.020828 Google Scholar
9. Sharma, P., K., A. Bansal, P. Garg, T. A. Tsiftsis, and R. Barrios, "Performance of FSO links under exponentiated Weibull turbulence fading with misalignment errors," IEEE ICC, 5110-5114, 2015. Google Scholar
10. Anbarasi, K., C. Hemanth, and R. G. Sangeetha, "A review on channel models in free space optical communication systems," Opt. Laser Technol., Vol. 97, 161-171, 2017.
doi:10.1016/j.optlastec.2017.06.018 Google Scholar
11. Zhao, J., S. H. Zhao, W. H. Zhao, Y. J. Li, Y. Liu, and X. Li, "Average capacity of airborne optical links over exponentiated Weibull atmospheric turbulence channels," Opt. Quant. Electron., Vol. 49, No. 3, 104, 2017.
doi:10.1007/s11082-017-0927-5 Google Scholar
12. Fu, H., H., P. Wang, T. Liu, T. Cao, L. X. Guo, and J. Qin, "Performance analysis of a PPMFSO communication system with an avalanche photodiode receiver over atmospheric turbulence channels with aperture averaging," Appl. Opt., Vol. 56, No. 23, 6432-6439, 2017.
doi:10.1364/AO.56.006432 Google Scholar
13. Balaji, K. A. and K. Prabu, "Performance evaluation of FSO system using wavelength and time diversity over malaga turbulence channel with pointing errors," Opt. Commun. , Vol. 410, 643-651, 2018.
doi:10.1016/j.optcom.2017.11.006 Google Scholar
14. Li, K. N., B. Lin, and J. Ma, "Bit-error rate investigation of satellite-to-ground downlink optical communication employing spatial diversity and modulation techniques," Opt. Commun. , Vol. 442, 123-131, 2019.
doi:10.1016/j.optcom.2019.03.012 Google Scholar
15. Wu, Y., H. P. Mei, C. M. Dai, F. M. Zhao, and H. L. Wei, "Design and analysis of performance of FSO communication system based on partially coherent beams," Opt. Commun., Vol. 472, 126041, 2020.
doi:10.1016/j.optcom.2020.126041 Google Scholar
16. Popoola, W. O., Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, and S. Ga, "Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel," IET Optoelectron., Vol. 2, No. 1, 16-23, 2008.
doi:10.1049/iet-opt:20070030 Google Scholar
17. Geng, D. X., P. F. Du, W. Wang, G. Gao, T. Wang, and M. L. Gong, "Single laser free-space duplex communication system with adaptive threshold technique and BER analysis in weak turbulent atmosphere," Opt. Lett., Vol. 39, No. 13, 3950-3953, 2014.
doi:10.1364/OL.39.003950 Google Scholar
18. Li, X., Y., X. H. Zhao, and P. Zhang, "Bit error rate analysis for modulating Retro-Reflctor free space optical communications with adaptive threshold over correlated gamma gamma fading channels," IEEE Commun. Lett. , Vol. 23, No. 12, 2275-2278, 2019.
doi:10.1109/LCOMM.2019.2943868 Google Scholar
19. Barrios, R. and F. Dios, "Exponentiated Weibull distribution family under aperture averaging for Gaussian beam waves," Opt. Express, Vol. 20, No. 12, 13055-13064, 2012.
doi:10.1364/OE.20.013055 Google Scholar
20. Barrios, R. and F. Dios, "Exponentiated Weibull model for the irradiance probability density function of a laser beam propagating through atmospheric turbulence," Opt. Laser Technol., Vol. 45, 13-20, 2013.
doi:10.1016/j.optlastec.2012.08.004 Google Scholar
21. Mudholkar, G. S. and D. K. Srivastava, "Exponentiated Weibull family for analyzing bathtub failure-rate data," IEEE Trans. Reliab., Vol. 42, No. 2, 299-302, 1993.
doi:10.1109/24.229504 Google Scholar
22. Press, W. H., S. A. Teukolsky, W. A. Vetterling, and B. P. Flannery, Numerical Recipies in C: The Art of Scientific Computing, Cambridge Univ., 1992.