1. Chang, Y. H., Y. Y. Jhu, and C. J. Wu, "Temperature dependence of defect mode in a defective photonic crystal," Optics Communications, Vol. 285, No. 6, 1501-1504, 2012.
doi:10.1016/j.optcom.2011.10.053 Google Scholar
2. Bougriou, F., et al. "Optofluidic sensor using two-dimensional photonic crystal waveguides," Eur. Phys. J. Appl. Phys., Vol. 62, No. 1, 11201-11205, 2013.
doi:10.1051/epjap/2013110442 Google Scholar
3. Wu, J. J. and J. X. Gao, "Low temperature sensor based on one-dimensional photonic crystals with a dielectric-superconducting pair defect," Optik, Vol. 126, No. 24, 5368-5371, 2015.
doi:10.1016/j.ijleo.2015.09.148 Google Scholar
4. Ma, L., T. Katagiri, and Y. Matsuura, "Surface-plasmon resonance sensor using silica-core Bragg fiber," Opt. Lett., Vol. 34, No. 7, 1069-1071, 2009.
doi:10.1364/OL.34.001069 Google Scholar
5. Lai, W., S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, "On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide," Opt. Lett., Vol. 36, 984-986, 2011.
doi:10.1364/OL.36.000984 Google Scholar
6. Zhang, Y., Y. Zhao, and Q. Wang, "Measurement of methane concentration with cryptophane E infiltrated photonic crystal microcavity," Sens. Actuators B: Chem., Vol. 209, 431-437, 2015.
doi:10.1016/j.snb.2014.12.002 Google Scholar
7. Chang, Y., Y. Jhu, and C. Wu, "Temperature dependence of defect mode in a defective photonic crystal," Optics Communications, Vol. 285, 1501-1504, 2012.
doi:10.1016/j.optcom.2011.10.053 Google Scholar
8. Zhang, Y., Y. Zhao, and R. Lv, "A review for optical sensors based on photonic crystal cavities," Sens. Actuators A: Phys., Vol. 233, 374-389, 2015.
doi:10.1016/j.sna.2015.07.025 Google Scholar
9. Liu, Y. and H. W. M. Salemink, "All-optical on-chip sensor for high refractive index sensing in photonic crystals," EPL, Vol. 107, No. 1-5, 34008, 2014.
doi:10.1209/0295-5075/107/34008 Google Scholar
10. Zheng, S., B. Shan, M. Ghandehari, and J. Ou, "Sensitivity characterization of cladding modes in long-period gratings photonic crystal¯ber for structural health monitoring," Measurement, Vol. 72, 43-51, 2015.
doi:10.1016/j.measurement.2015.04.014 Google Scholar
11. Zheng, S., Y. Zhu, and S. Krishnaswamy, "Nanofilm-coated photonic crystal fiber long-period gratings with modal transition for high chemical sensitivity and selectivity," SPIE, Vol. 8346, 83460D, 2012. Google Scholar
12. Fenzl, C., T. Hirsch, and O. S. Wolfbeis, "Photonic crystals for chemical sensing and biosensing," Angew. Chem. Int. Edit., Vol. 53, 3318-3335, 2014.
doi:10.1002/anie.201307828 Google Scholar
13. Gong, Q. H. and X.-Y. Hu, "Ultrafast photonic crystal optical switching," Front. Phys. China, Vol. 1, 171, 2006.
doi:10.1007/s11467-006-0010-3 Google Scholar
14. Singh, A., K. B. Thapa, and N. Kumar, "Analysis and design of optical biosensors using one-dimensional photonic crystals," Optik, Vol. 126, No. 2, 244-250, 2015.
doi:10.1016/j.ijleo.2014.08.172 Google Scholar
15. Awasthi, S. K. and S. P. Ojha, "Design of a tunable optical filter by using a one-dimensional ternary photonic band gap material," Progress In Electromagnetics Research M, Vol. 4, 117-132, 2008.
doi:10.2528/PIERM08061302 Google Scholar
16. Mohebbi, M., "Refractive index sensing of gases based on a one-dimensional photonic crystal nanocavity," J. Sens. Sens. Syst., Vol. 4, No. 1, 209-215, 2015.
doi:10.5194/jsss-4-209-2015 Google Scholar
17. Sakoda, K., Optical Properties of Photonic Crystals, Vol. 80, Springer Science & Business Media, 2004.
18. Skorobogatiy, M. and J. Yang, Fundamentals of Photonic Crystal Guiding, Cambridge University Press, 2009.
19. Mounir, B., C. Haouari, A. Saïd, and A. Hocini, "Analysis of highly sensitive biosensor for glucose based on a one-dimensional photonic crystal nanocavity," Optical Engineering, Vol. 58, No. 2, 027102, 2019.
doi:10.1117/1.OE.58.2.027102 Google Scholar
20. Wu, P. C. and W. Lee, "One-dimensional photonic crystals containing memory-enabling liquid crystal defect layers," Proc. SPIE, Vol. 8828, 1-10, 2013. Google Scholar
21. Mohamed, M. S., M. F. O. Hameed, M. M. El-Okr, and S. S. A. Obayya, "Characterization of one-dimensional liquid crystal photonic crystal structure," Optik, Vol. 127, 8774-8781, 2016.
doi:10.1016/j.ijleo.2016.06.101 Google Scholar
22. Bouras, M. and A. Hocini, "Mode conversion in magneto-optic rib waveguide made by silica matrix doped with magnetic nanoparticles," Optics Communications, Vol. 363, 138-144, 2016.
doi:10.1016/j.optcom.2015.11.024 Google Scholar
23. Marthandappa, M., R. Somashekar, and Nagappa, "Electro-optic effects in nematic liquid crystals," Phy. State Sol. (A), 127-259, 1991. Google Scholar
24. Armand, H. and M. D. Ardakani, "Theoretical study of liquid crystal dielectric-loaded plasmonic waveguide," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 2, 275, 2017.
doi:10.1017/S1759078715001695 Google Scholar
25. Liu, Y., Y. Liu, H. Li, D. Jiang, W. Cao, H. Chen, L. Xia, and R. Xu, "Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal," Review of Scientific Instruments, Vol. 87, 074709, 2016.
doi:10.1063/1.4959199 Google Scholar
26. Li, J., C. H. Wen, S. Gauza, R. Lu, and S. Wu, "Refractive indices of liquid crystals for display applications," IEEE/OSA J. Disp. Technol., Vol. 1, 51-61, 2005.
doi:10.1109/JDT.2005.853357 Google Scholar
27. Li, J., S.-T. Wu, B. Stefano, M. Riccardo, and F. Sandro, "Infrared refractive indices of liquid crystals," J. Appl. Phys., Vol. 97, 073501, 2005.
doi:10.1063/1.1877815 Google Scholar
28. Li, J. and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," Appl. Phys., Vol. 95, 896, 2004.
doi:10.1063/1.1635971 Google Scholar
29. Bouzidi, A. and D. Bria, "Low temperature sensor based on one-dimensional photonic crystals," International Conference on Electronic Engineering and Renewable Energy, 157-163, Springer, Singapore, 2018. Google Scholar
30. Hocini, A., M. Bouras, and H. Amata, "Theoretical investigations on optical properties of magneto-optical thinfilm on ion-exchanged glass waveguide," Opt. Mater., Vol. 35, No. 9, 1669-1674, 2013.
doi:10.1016/j.optmat.2013.04.026 Google Scholar
31. Dermeche, N., M. Bouras, and R. Abdi-Ghaleh, "Existence of high Faraday rotation and transmittance in magneto photonic crystals made by silica matrix doped with magnetic nanoparticles," Optik, Vol. 198, 163225, 2019.
doi:10.1016/j.ijleo.2019.163225 Google Scholar
32. Liu, Y., Y. Liu, H. Li, D. Jiang, W. Cao, H. Chen, L. Xia, and R. Xu, "Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal," Review of Scientific Instruments, Vol. 87, 074709, 2016.
doi:10.1063/1.4959199 Google Scholar
33. Mounir, B., C. Haouari, A. Saïd, and A. Hocini, "Analysis of highly sensitive biosensor for glucose based on a one-dimensional photonic crystal nanocavity," Optical Engineering, Vol. 58, No. 2, 027102, 2019.
doi:10.1117/1.OE.58.2.027102 Google Scholar
34. Li, J. and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," Appl. Phys., Vol. 95, 896, 2004.
doi:10.1063/1.1635971 Google Scholar
35. Monmayrant, A., et al. "Full optical confinement in 1D mesoscopic photonic crystal-based microcavities: An experimental demonstration," Optics Express, Vol. 25, No. 23, 28288-28294, 2017.
doi:10.1364/OE.25.028288 Google Scholar
36. D'orazio, A., "Infiltrated liquid crystal photonic bandgap devices for switching and tunable filtering," Fiber and Integrated Optics, Vol. 22, No. 3, 161-172, 2003.
doi:10.1080/01468030390111968 Google Scholar
37. Perova, T. S., et al. "Tunable one-dimensional photonic crystal structures based on grooved Si infiltrated with liquid crystal E7," Phy. State Sol. (C), Vol. 4, No. 6, 1961-1965, 2007.
doi:10.1002/pssc.200674340 Google Scholar
38. Miroshnichenko, A. E., E. Brasselet, and Y. S. Kivshar, "All-optical switching and multistability in photonic structures with liquid crystal defects," Applied Physics Letters, Vol. 92, No. 25, 230, 2008.
doi:10.1063/1.2949076 Google Scholar